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Soil drought decreases water-use of pine and spruce but not of larch in a 
dry inner alpine valley
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Abstract

The study quantified the effect of soil water availability on sap flow density (Qs) of  
Pinus sylvestris, Picea abies and Larix decidua in a dry inner alpine valley, Tyrol,  
Austria. To reduce soil water availability we installed a transparent roof constructi-
on above the forest floor around 10 trees (6 P. sylvestris, 3 P. abies and 1 L. decidua). 
Eleven other trees (5 P. sylvestris, 3 P. abies and 3 L. decidua) served as controls in the 
absence of any manipulation. Roofing reduced soil water availability, while soil tem-
perature was not affected. Sap flow density and environmental parameters were 
monitored throughout two growing seasons. In P. sylvestris and P. abies withholding 
precipitation caused Qs to decrease by 30 and 19%, respectively below levels in 
control trees, while no effect of limited soil water availability was detected on Qs in  
L. decidua. Hardly affected were leaf-level net CO2 uptake rate and stomatal conduc-
tance for water vapor. We conclude that the water-saving strategy of P. sylvestris and 
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P. abies may be a selective advantage to tolerate future increasing aridity in dry inner 
alpine valleys, while increasing aridity may be critical for L. decidua if aridity will in-
crease in future.

Zusammenfassung

Der Artikel beschreibt die Auswirkung einer reduzieren Bodenwasserverfügbarkeit 
auf den Wasserhaushalt von Rotföhre (Pinus sylvestris), Fichte (Picea abies) und Lärche 
(Larix decidua) in einem inneralpinen Trockental, Tirol, Österreich. Unter dem Kronen-
dach von 10 adulten Bäumen (6 P. sylvestris, 3 P. abies und 1 L. decidua) installierten 
wir eine transparente Dachkonstruktion um durch Regenausschluss eine künstli-
chen Bodentrockenheit zu erzeugen. Elf weitere Bäume (5 P. sylvestris, 3 P. abies und  
3 L. decidua) dienten als Kontrollen. Mit Hilfe von Xylemfluss-Sensoren bestimmten 
wir über zwei Vegetationsperioden hindurch kontinuierlich den Wasserverbrauch. 
Verglichen zu Kontrollbäumen verursachte die durch Regenausschluss hervorgeru-
fene Bodentrockenheit eine Verringerung des Wasserverbrauchs bei der Föhre und 
der Fichte um 30 bzw. 19 %. Demgegenüber zeigte die Lärche keine Einschränkung in 
der Wasserabgabe. Falls sich auf Grund der prognostizierten Klimaänderung in inner- 
alpinen Trockentälern die Verfügbarkeit von Bodenwasser verringert, dürfte lang-
fristig die wassersparende Strategie von Fichte und Kiefer ein selektiver Vorteil  
gegenüber der Lärche sein, da diese auch bei lang anhaltender Bodentrockenheit ihre  
Transpiration nicht einschränkt.

1. Introduction

Scots pine (Pinus sylvestris) forests in inner alpine dry valleys have raised concern as 
they may undergo significant ecological alterations through warming under climate 
change (Zweifel et al., 2009; Gruber et al., 2011). During the last century, global surfa-
ce temperature has increased by about 0.6 ± 0.2°C (Jones et al., 1988). Global change 
models predict further increase up to 4°C by the end of this century for Central Euro-
pe (IPCC, 2013). In inner alpine valleys in the central Austrian Alps, the mean annual 
air temperature during the last 10 years (2001-2010) was enhanced on average by 
0.5°C (i.e., to 10.3 °C) when compared with the mean of the previous 30 years (9.8 °C). 
While the temperatures increase is expected to be more pronounced during the sum-
mer (Christensen et al., 2007), summer precipitation is likely to decrease (Maracchi et 
al., 2005), resulting in more frequent and severe drought events (Schär et al., 2004; 
IPCC, 2013). Although effects of climate change on forest ecosystems are uncertain, 
Zweifel et al. (2009) suggested modifications in the abundance of tree species in in-
ner alpine valleys. In dry inner Alpine valleys soil water availability represents a major 
environmental constraint on the physiological performance of conifers and unusual-
ly distinct vegetation dynamics have been reported in Switzerland (Dobbertin et al., 
2005; Bigler et al., 2006), Italy (Verturi and Tagliaferro, 1996) and in western parts if 
the Inn valley, Tyrol, Austria (Oberhuber, 2001; Oberhuber and Gruber, 2010, Schus-
ter and Oberhuber 2013). Increasing air temperature in the Central Austrian Alps are 
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expected to change ecosystem characteristics with associated biogeochemical and 
hydrological cycling (Barnett et al. 2005). 

Although drought effects on tree tree transpiration has been studied intensively (Pa-
nek and Goldstein, 1999; Reichstein et al,. 2002; Breda et al., 2006; Granier et al,. 2007; 
Breshears et al., 2008; Dulamsuren et al., 2009), the responses to extreme meteorolo-
gical conditions such as during the dry summer of 2003 (Reichstein et al. 2002, Breda 
et al. 2006, Granier et al. 2007) still await clarification for conifers in inner alpine dry 
valleys. In situ manipulation of soil water availability is a common methodology for 
assessing potential effects of limited soil water availability in forest ecosystems (Lam-
ersdorf et al., 1998; Broken et al., 1999; Corre and Lamersdorf, 2004; Vicca et al., 2012; 
Leo et al., 2013).

Therefore, our specific goal was to investigate the influence of soil water availability 
in the absence of other soil disturbance on tree transpiration of co-occurring Scots 
pine (P. sylvestris L.), Norway spruce (Picea abies (L.) Karst,) and European larch (Larix 
decidua Mill.) trees. Selected species comprise the major coniferous species in dry, 
inner alpine valley in Tyrol, Austria and differ with respect to phenological and suc-
cessional traits. Larix decidua and P. sylvestris are light demanding species predomi-
nating in early successional stages, while P. abies is a moderately shade-dominant 
tree, which predominates in the late-successional stage (Ellenberg and Leuschner, 
2010). We hypothesized that a decline in soil water availability in the absence of other 
soil disturbance will (1) lead to a water-saving strategy and thus reduce canopy trans-
piration of evergreen P. sylvestris and P. abies (2) while deciduous L. decidua will follow 
a more risky strategy to withstand soil water shortage. Experimental soil water shor-
tage was incited by roofing the forest floor throughout three consecutive growing 
seasons while continuously monitoring sap flow density (Qs) with thermal dissipation 
probes (Granier, 1985). Findings are used to explore species-specific differences in 
water strategies, as species-specific differences in water strategies provides a basis 
for stand level hydrological properties of such forest ecosystems in a future warmer 
environment in dry, inner alpine valleys.

2. Material and Methods

2.1. Study site

The study was carried out in an open Pinus sylvestris forest (Erico-Pinetum typicum; 
Ellenberg and Leuschner, 2010) growing on postglacial rock-slide area situated in the 
montane belt of the inner Alpine dry Inn valley, Tyrol, Austria (750 m a.s.l.; 47° 14‘ 00“ 
N, 10° 50‘ 20“ E). During the study period (2011 - 2013), the trees were approximately 
100-150 years old with a mean tree height of 18 ± 2 m. The stand density was 2117 
trees ha-1 (Pinus sylvestris 60%, Picea abies 20% and Larix decidua 20%) and their dia-
meter at beast height (DBH) averaged 26.5 ± 12.7 m. 
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The study site is characterized by a continental climate with a mean annual tempera-
ture of 7.3° C (long term mean 1911-2012; Ötz, 812 m a.s.l., 5 km south from the study 
site).The mean annual precipitation was 716 mm, with the minority of rain falling in 
winter (100 mm) and spring (138 mm). Limestone dominates the geology at the study 
site. According to the World Base for Soil Resources (FAO, 2006), the soil at the study 
site was classified as a protorendzina (Oberhuber and Gruber, 2010). A xeric moder 
of 5-15cm thickness covered the subsoil. The top 10cm of the subsoil was enriched 
by 10 % of organic matter and the soil texture was dominated by sand (91%) and silt 
fractions (9 %) Hydraulic field capacity was 0.20 m3 m-3 (sensu Blume et al., 2010), and 
the wilting point (at -1.5 MPa) was reached at 0.06 m3 m-3 (Leo et al., 2013). 

Two nearby sites (c. 50 m in linear distance) where Larix decidua, Pinus sylvestris and 
Picea abies grow side by side were selected (“control” and ‘roofed” plot, respectively) 
and scaffolds of 16 m height were constructed to reach the upper crowns of all three 
species at both plots. As the study site was situated in nature reserve the installation 
of more than one roofed plot and two scaffoldings were not feasible. In both plots all 
measurements were carried out on dominant randomly selected trees similar in age, 
diameter and height. 

2.2. Manipulation of soil water availability

Soil water manipulation was accomplished by roofing the forest floor according to 
the approach by Leo et al. (2013). For reducing plant water availability, the roof was 
installed underneath the canopy 1.0-1.3 m above ground (slope 10-15° from the cen-
ter to the outer end). The roof consisted of frame anchored into the soil, covered with 
a 1.2 mm thick transparent rip stop film (hereafter “roofed” plot). The covered area 
was 240 m2 and included 10 trees (6 P. sylvestris, 3 P. abies and 1 L. decidua). Eleven 
trees (5 P. sylvestris, 3 P. abies and 3 L. decidua) trees served as control in the absence of 
soil water manipulation (“control” plot). Rain exclusion was operated in 2011 during 
April throughout October (Leo et al., 2013) and continued throughout each snow free 
period (March - September) during 2012 and 2013. The roof was removed during the 
dormant season. As stretching of roots outside roof could not be prevented because 
restrictions imposed by nature conservation prohibited trenching, roofed trees were 
able to extract water from outside of the roofed area indicated by δ18O analysis (Leo 
et al., 2013).

2.3. Environmental, sap flow density measurements and tree characteristics

Air temperature (Ta), relative humidity (RH), photosynthetic active radiation (PAR), 
wind velocity (v) and precipitation (P) were monitored by an automatic weather stati-
on (ONSET, Pocasset, MA, USA) 15 m above ground level on top of a scaffolding in the 
roofed plot. Because the roofed and the control plot were located within less than 50 
m in linear distance, records of the above mentioned environmental parameters were 
regarded as representative for both plots. In order to determine seasonal differences 
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in soil water content (θ) and soil temperature (Ts) between control and roofed trees 
three soil moisture sensors (Theta Probe Type ML2x, Delta-T, Cambridge, England) 
and three soil temperature probes (HOBO Pendant; ONSET, Pocasset, MA, USA) were 
installed in each plot in 15-20 cm and in 5-10 cm soil depth, respectively. Soil moisture 
sensors were connected to two DL6 data loggers (one per plot; Delta-T, Cambridge, 
England), while the soil temperature probes were equipped with internal storages. 
The measuring interval for soil moisture and soil temperature was 30 minutes. The 
data logger for all the other environmental parameters was programmed to record 
30-min averages of measurements taken every minute.

Sap flow density (Qs) of the selected study trees was monitored by means of the heat 
dissipation approach according to Granier (1985), using three-channel battery-ope-
rated sap flow systems (M1 Sapflow Systems PROSA-LOG; UP, Umweltanalytische 
Produkte GmbH, Cottbus, Germany). Each system consisted of a three-channel PRO-
SA-LOG data logger, providing one constant source of electrical power (0.2 W) for  
heating three sensors each. Each sensor consisted of two probes of 20mm in length 
and 2mm in diameter each. The upper probe of each sensor included the heater, 
whereas the lower probe was unheated, remaining at trunk temperature for refe-
rence. The probes were inserted 15 cm apart from each other in the vertical directi-
on at 20 mm depth in the outer hydroactive xylem on the north-facing side of trees 
0.8 m above ground. Accounting for variations in Qs across the cross-sectional trunk 
sapwood area, two sensors were also installed at 20 and 40 mm depth in addition to 
the one at 20 mm in two P. sylvestris, two P. abies, and one L. decidua tree per treat-
ment. Probe positions were fully insulated with a thick aluminium-coated foam cover 
to prevent any direct radiation while providing mechanical protection. The tempera-
ture difference between the upper heated probe and the lower reference probe was 
recorded every 30 minutes. Two car batteries (12 VDC, 90 Ah) which were recharged 
by means of an 80 W solar panel in combination with a charge controller each provi-
ded power for all electrical equipment. 

For each tree Qs (g m-2 s-1) was calculated from the temperature difference between 
the two probes (∆T) relative to the maximum temperature difference (∆Tm) which  
occurred at times of zero flow according to the calibration equation by Granier (1987): 

Qs = 119*[(∆Tm - ∆T)/∆T]1.231  (1)

Each night ∆Tm was determined and used as a reference for the following day. The 
underlying assumption of zero sap fluxes during the night is justified, as vapor pres-
sure deficits were mostly low. In addition, during most nights temperature time 
courses reached equilibrium between both sensors, suggesting complete refilling of 
tree-internal water storage. Environmental data and Qs were monitored continuously  
throughout the growing seasons 2012 (March 14 throughout October 27) and 2013 
(April 15 throughout October 18). 
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Stem diameter increment was determined in fall 2014 based on measurements along 
two increment cores (5 mm in diameter) per tree in parallel to the contour line to 
avoid reaction wood taken at sensor height. The cores were dried in the laboratory, 
non-permanently mounted on a holder, and the surface was prepared with a razor 
blade for visibility enhancement of tree ring boundaries (Pichler, 1990). Ring widths 
were measured to the nearest 1 µm using a reflecting microscope (Olympus SZ61) 
and the software package TSAP WIN Scientific. Ring widths of both cores from each 
sample tree were averaged and individual tree ring chronologies were then checked 
for dating accuracy using the COFECHA software (Grissino-Mayer 2001). In order to 
account for the inherent variability in growth among the trees under study not attri-
butable to experimental factors radial stem increment was normalized to the mean 
radial stem increment obtained in the 3 years before soil water manipulation (2008-
2010) commenced.

2.4. Shoot water potential and gas exchange measurements

Measurements of shoot water potential and needle CO2/H2O gas exchange was mea-
sured repeatedly throughout the growing season of 2012 (May 25 and 26, June 19, 
July 18, August 1 and 20, and October 7). To facilitate needle water potential and 
gas exchange measurements, one scaffolding was erected in each plot for accessing 
top-canopy shoots. Three sample trees (one Pinus sylvestris, one Picea abies, and one 
Larix decidua tree) were successfully accessed in the control and the roofed plot, re-
spectively. The same trees were also used for examining needle water potential in 
2011 (Leo et al. 2013) and growth phenology in 2011 and 2012 (Swidrak et al., 2013).

Shoot water potential (Ψ; MPa) was measured with a pressure chamber (Model 1000; 
PMS Instrument Company, Corvallis; Oregon, USA) at different dates on rainless days 
with clear sky throughout 2012. Needle water potential measurements included the 
determination of predawn (Ψp) and midday (Ψm), water potential. While Ψp is repre-
sentative of the mean soil water potential next to the roots because the trees should 
be in equilibrium with the soil at the end of the night (Havranek and Benecke, 1987), 
Ψm represents the daily minimum Ψ. Water potential measurements were carried out 
on freshly cut twigs before sunrise between 04:30 and 05:00 (Ψp) and at noon (Ψm) 
local time.

In parallel to Ψ needle CO2/H2O gas exchange of three selected twigs per tree  
(6 trees, 18 shoots in total) was measured in situ using a portable gas exchange system 
(CIRAS 1, PP Systems, Hitchin, Hertfordshire, UK) equipped with a PLC6 leaf chamber 
under ambient conditions. In order to estimate daily maximum net CO2 uptake rate 
(Amax), diurnal courses of gas exchange were assessed repeatedly during the growing 
season of 2012.While gas exchange of L. decidua was estimated for short-shoot need-
les, measurements in P. sylvestris and P. abies were made in one-year-old-needles after 
removing the terminal buds in February to prevent the influence of growth respira-
tion on net CO2 uptake and to avoid nutrient leaching into the new flush (Weikert et 
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al., 1979). For gas exchange measurements selected twigs were marked at the base 
to ensure that the same needles of each of the selected twigs (three per tree) were 
measured throughout the entire daily course. Gas exchange data were related to pro-
jected leaf area. In fall, twigs were detached for estimating leaf area by using the open 
source software ImageJ (http://rsbweb.nih.gov/ij/index.html). 

2.5. Data analysis

Values of Qs and environmental data were available at 30-min resolution. To prevent 
stem capacitance from biasing the analysis of the transpirational response to varia-
tions in environmental conditions (Oren et al. 1998; Ewers et al. 1999), we condensed 
diurnal courses of Qs to daily means. Finally, for each species Qs data were pooled 
over all the trees per treatment and year (2012 and 2013). Differences in overall mean 
Qs between control and warmed P. sylvestris, P. abies and L. decidua trees, respecti-
vely during the periods of roof closure in 2012 and 2013 were analyzed by one-way 
ANOVA. One way ANOVA was also used to test differences in Ψp, Ψm and gas exchan-
ge parameters between control and roofed P. sylvestris, P. abies, and L. decidua trees.  
A probability level of P < 0.05 was considered as statistically significant. Statistical 
analyses were made with the SPSS 16 software package for Windows (SPSS. Inc.  
Chicago, USA)

3. Results

3.1. Environmental factors

Daily mean PHAR varied between 28 µmol m-2 s-1 (October 10, 2012) and 686 µmol 
m-2 s-1 (June 7, 2013), averaging 390 µmol m-2 s-1 in 2012 and 388 µmol m-2 s-1 in 2013 
(Fig. 1). Daily mean air temperature (Ta) was 14.1° C in 2012 and 15.0° C in 2013, and 
varied between 1.9° C on April 8, 2012 and 26.0° C on June 30, 2012 and August 2, 
2013 (Fig. 1). Daily mean vapor pressure deficit (D) was 1.2 kPa in 2012, and 1.3 kPa in 
2013, approaching zero on rainy days and reaching a maximum of 2.0 kPa on August 
5, 2013 (data not shown). Average daily mean soil temperature (Ts) in 5-10 cm soil 
depth over 2012 and 2013 did not differ significantly (P > 0.23) between the control 
(11.9° C in 2012; 12.0° C in 2013 and the roofed plot (11.7° C in 2012; 12.3° C in 2013) 
(data not shown). 

Precipitation (P) during the study periods 2012 and 2013 amounted 596 and 470 mm, 
respectively (Fig 1). Due to frequent rainfall over the two investigation periods 2012 
and 2013 θ in 15-20 cm soil depth varied between 0.07 m3 m-3 (June 3, 2012) and 0.32 
m3 m-3 (April 20, 2013) and averaged 0.13 and 0.15 m3 m-3 in 2012 and 2013, respecti-
vely (Fig. 1), indicating that control trees did not suffer from soil drought. Roofing by 
contrast, caused θ to decline progressively reaching a minimum on July 12, 2012 and 
July 15, 2013 and stayed close to the wilting point (0.06 m3 m-3) throughout the end 
of both investigation periods (Fig. 1). 



Seite 8 R. Schuster, W. Oberhuber, A. Gruber, G. Wieser

Seasonal patterns of predawn (Ψp) and midday (Ψm), water potential also reflected 
differences in plant available water between control and roofed trees. During the gro-
wing season 2012 Ψp of control trees never dropped below -1.0 MPa whereas Ψp of 
roofed trees reached -1.5 MPa (Fig. 2). Midday water potential fell below -2.5 MPa in 

Fig. 1 a, d: Seasonal course of daily mean photosynthetic active radiation (PAR), b, e daily mean air temperature, c, f daily sum 
of precipitation (bars), and daily mean soil water content in 15 to 20 cm soil depth in the control (dotted line) and the roofed 
(solid line) plot from March 14, throughout October 27, 2012, and April 15, throughout October 18, 2013.

Fig. 2: Seasonal course of predawn and midday leaf water potential in control and roofed Pinus sylvestris (left), Picea abies 
(middle), and Larix decidua trees (right) obtained throughout the investigation period 2012. Values are the mean ± SE of three 
measurements per species and treatment.
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control trees and was in general considerably above the values of roofed trees (Fig. 2) 
indicating a lower amount of plant available water. 

3.2. Stem increment

Radial stem increment averaged for the three years (2008-2010) preceding the 
drought experiment did not differ significantly between control and roofed trees (all 
P > 0.18). The three-year average for the control trees was 0.77 ± 0.14 mm for P. sylves-
tris, 1.04 ± 0.18 mm for P. abies, and 0.21 ± 0.07 mm for L. decidua. The corresponding 
values for roofed P. sylvestris, P. abies, and L. decidiua trees were 0.59 ± 0.16, 1.02 ± 
0.26, and 0.33 ± 0.11 mm, respectively. Withholding precipitation throughout three 
growing seasons caused normalized radial stem increment to decline on average by 
34% in P. sylvestris (P = 0.08), 37% in P. abies (P = 0.04), and 15% in L. decidua (P = 0.68) 
below the corresponding levels of control trees (Table 1).

Pinus sylvestris Picea abies Larix decidua

Year Control Roofed Control Roofed Control Roofed
2011 0.52 0.31 0.78 0.48 0.60 0.53
2012 0.72 0.55 0.76 0.67 0.91 1.11
2013 0.63 0.37 0.96 0.41 1.57 0.99 

Table 1: Normalized stem diameter increment at height of sensor installation in control and roofed P. sylvestris, P. abies, and 
L. decidua trees selected for sap flow measurements. Stem diameter increment was normalized to the mean radial stem 
increment obtained in the 3 years before soil water manipulation (2008-2010) commenced. Values are the mean of one or 
two to six trees per treatment.

Year Species Treatment 0-20 mm 20-40 mm P

2012 P sylvestris Control 4.47 (0.19) 3.55 (0.15) < 0.001

Roofed 3.09 (0.10) 2.88 (0.10) < 0.001

P abies Control 3.13 (0.12) 0.96 (0.04) < 0.001

Roofed 2.60 (0.17) 0.98 (0.04) < 0.001

L. decidua Control 3.50 (0.23) 1.89 (0.13) < 0.001

Roofed 4.06 (0.19) 2.10 (0.09) < 0.001

2013 P sylvestris Control 2.04 (0.07) 2.07 (0.08) 0.62

Roofed 1.38 (0.06) 1.58 (0.06) < 0.001

P abies Control 3.17 (0.12) 1.35 (0.05) < 0.001

Roofed 2.49 (0.10) 1.22 (0.05) < 0.001

L. decidua Control 3.05 (0.14) 2.11 (0.05) < 0.001

Roofed 3.53 (0.09) 1.97 (0.05) < 0.001

Table 2: Seasonal averaged sap flow density (Qs; g m-2 s-1 ) ± SE in 0-20 and 20-40 mm sapwood depth in control and roofed  
P. sylvestris, P. abies, and L. decidua for the periods 2012 (March 13 - July 4) and 2013 (April 15 - October 21). Values are the 
mean ± SE of one or two to six sensors per treatment. Differences in Qs between control and roofed trees are indicated as  
P values and significant differences (P < 0.05) between control and roofed trees are marked in bold and italics.
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3.3. Sap flow density, leaf level transpiration and plant water status

Seasonal courses of sap flow density (Qs) in each of the experimental trees in 0-20 mm 
(Fig. 3) and 20-40 mm sapwood depth (data not shown) largely reflected seasonal 
trends in PHAR and D (cf. Fig. 1). In general, there was a decline from 0-20 mm to 
20-40 mm in the growing season mean Qs for P. sylvestris, P. abies and L. decidua of 
20 - 69% (all P < 0.05), except for P. sylvestris in 2013 where there was an increase (Ta-
ble 2). During the second (2012) and third year (2013) withholding water generally 
caused daily mean Qs in 0-20 mm sapwood depth of roofed P. sylvestris and P. abies 
trees to decline by 30 and 19% respectively below the levels of control trees (Table 2). 
The corresponding values for 20-40 mm sapwood depth were 19 and 4% (Table 2). In  
L. decidua by contrast withholding water had no effect on Qs and roofed trees was at 
average 15% above the corresponding values of control trees (Table 2). 

The impact of plant water status is also reflected in different slopes of the transpi-
ration (E) to needle water potential (Ψ) relationship in P. sylvestris and P. abies trees. 
Withholding water caused a steeper slope in the (Fig. 4). In L. decidua by contrast,  
(Fig. 4) withholding water did not affect the in Ψ/E relationship (Fig. 4).

3.4. Leaf level gas exchange

In 2012 mean rates of daily maximum net photosynthesis (Amax) and transpiration (E) 
of one-year-old roofed P. sylvestris and P. abies trees displayed a decline of 15 to 50% 
below respective levels of control trees, which however was only statistically signi-
ficant for E in P. sylvestris (Table 3). In short shoot needles of L. decidua by contrast  
withholding precipitation caused an increase in Amax and E (Table 3). Withholding 
precipitation caused a decline in stomatal conductance for water vapor (gH2O) in 
all the three species investigated (Table 3). Withholding water also caused instanta-

Fig. 3:The relationship between transpiration and leaf water potential in control and roofed Pinus sylvestris (left), Picea abies 
(middle), and Larix decidua trees (right) obtained throughout the investigation period 2012. Values are the mean ± SE of three 
measurements per species and treatment.
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neous water-use efficiency (WUE) to increase in P. sylvestris and P. abies and to decline 
in L. decidua while the opposite was observed for intrinsic WUE (Table 3). 

4. Discussion

In our study withholding precipitation caused radial stem increment to decline in all 
the three species more intensely (Table 1; Swidrak et al., 2013) than net photosyn-
thesis (Table 3). Moreover, although at a nearby xeric site radial growth of P. sylvestris 
was drastically reduced (Oberhuber and Gruber 2010) carbohydrate pools were not  
depleted, when compared to our more mesic site (Gruber et al., 2011), suggesting 
that soil drought may uncouple growth from photosynthesis (Muller et al., 2011).  
Limited radial growth upon limited soil water availability (Eilmann et al., 2009) has 
also been observed in the central Wallis, Switzerland (Zweifel et al., 2006).

Our experimental approach was appropriate to manipulate soil water availability,  
enabling for clarifying water dynamics of co-occurring conifers in situ under a wide 
range of environmental conditions. Although δ18O analyses of the xylem indicated 
that roofed trees were able to extract water from outside the roofed area (Leo et al., 
2013) seasonal patterns of Ψp and Ψm (Fig. 2) reflected differences in plant available 
water between control and roofed trees (Leo et al. 2013). Moreover, treatment diffe-
rences in daily mean soil temperature stayed within the typical variation at the study 
site (Oberhuber and Gruber, 2010; Swidrak et al., 2013), which confirmed the emplo-
yed roofing system to prevent any change in soil temperature. 

Changes in Qs in our study may be related to treatment induced alterations in tree 
water relations. This is reflected in altered correlations between the rate of leaf le-
vel transpiration (E) and shoot water potential in P. sylvestris and P. abies (Ψ; Fig. 4).  
In previous studies withholding water also caused a steeper slope in Ψ/E relationship 
in P. sylvestris and P. abies, suggesting a “long-term change in the tree-water status” 
due to a decrease in conductance of water flow from the soil to the foliage (Schulze 
and Hall, 1982; Matyssek et al., 2010). In L. decidua by contrast, three years of with-
holding precipitation in our study did not cause any response in plant water status  

Pinus sylvestris Picea abies Larix decidua

Control Roofed P Control Roofed P Control Roofed P
Amax 4.54±0.50 3.40±0.30 0.058 3.47±0.41 2.96±0.30 0.404 6.57±0.69 6.95±0.51 0.704
E 0.50±0.08 0.30±0.04 0.029 0.38±0.07 0.25±0.05 0.164 0.85±0.14 1.12±0.13 0.220
gH2O 32.93±5.96 14.28±1.40 0.005 15.00±2.59 12.73±1.98 0.483 60.06±10.46 54.79±6.74 0.722
WUE 8.04±0.91 10.19±1.94 0.344 7.79±1.38 9.34±2.59 0.585 8.34±0.70 6.52±0.77 0.121

iWUE 0.207±0.056 0.248±0.020 0.488 0.291±0.066 0.244±0.029 0.530 0.132±0.022 0.131±0.009 0.978

Table 3: Mean daily maximum net photosynthesis (Amax; µmol m-2 s-1), transpiration (E; mmol m-2 s-1), stomatal con-
ductance for water vapour (gH2O; mmol m-2 s-1), instantaneous water use efficiency (WUE; µmol CO2 H2O mol-1); and 
intrinsic water use efficiency (iWUE; µmol mol-1), of one year old needles of control and roofed P. sylvestris and P. abies trees 
and short shoot needles of control and roofed L. decidua trees obtained in 2012, and corresponding P values. Values are the 
mean ± SE of three measurements per species and treatment and are related to projected leaf area.
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(Fig. 4). Even in roofed L. decidua trees Ψ never dropped below a critical level -4.9 MPa.  
A value which would cause a 50% loss in hydraulic conductance (Beikircher et al., 
2010). 

Variations in radial patterns of Qs observed in our study (Table 2) were similar to that 
found in several studies on conifers, with peak values in the outer sapwood (Cermak 
et al., 1992; Oren et al., 1998; Lundbald et al., 2001; Nadezhdina et al., 2007, Kucerova 
et al., 2010). The reversed radial pattern of Qs observed in roofed P. sylvestris trees in 
the third year of soil water manipulation (2013; Table 2) might have been an effect of 
water availability as there is evidence that radial patterns of Qs can be redistributed 
under conditions of soil water deficit (Cermak and Nadezhdina 1998).

Seasonal patterns of Qs were similar to those reported previously for the same study 
site (Leo et al. 2013) and a neighboring P. sylvestris stand (Wieser et al., 2014). During 
the second and third year, withholding water significantly decreased Qs in P. sylvestris 
and P. abies but not in L. decidua (Fig. 4, Table 2). Independent of treatment lower 
shoot water potentials in roofed P. sylvestris and P. abies trees (Fig. 3) were accompa-
nied by a decline in E (Fig. 5) and a lower canopy conductance related to the same 
reference levels of D (Leo et al., 2013), emphasizing the influence of plant available 
water on tree water loss. This soil drought response of P. sylvestris and P. abies fits 
to a typical water saving strategy. A water saving strategy has also been observed 
previously in drought stressed adult field grown P. sylvestris trees in Austria (Wieser 
et al., 2014), the northern Mongolian forest Steppe (Dulamsuren et al., 2009), Siberia 

Fig. 4: Seasonal course of daily mean sap flow density in control and roofed Pinus sylvestris (left), Picea abies (middle), and 
Larix decidua trees (right) from March 13, throughout July 4, 2012 and from April 15, throughout October 21, 2013. Values are 
the mean ± SE of one or two to six sensors per treatment in 0-20 mm sapwood depth.
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(Sugimoto et al., 2002), Scotland (Perks et al., 2004), Spain (Llores et al., 2008) and in 
Mediterranean tree species (Epron and Dryer, 1978; Borghetti et al., 1998; Luis et al., 
2005; Brito et al., 2014, 2015) and thus significantly reducing tree water loss under 
periods of high evaporative demand.

The significantly lower Qs values in roofed P. sylvestris and P. abies trees observed at 
our study site suggest that both conifer species behave “isohydric” as they close their 
stomata relatively early under conditions of low plant water availability and thus sta-
bilize their water relations (Anfodillo et al., 1998; Matyssek et al., 2009). This water 
saving strategy of P. sylvestris and P. abies corresponds to the vulnerability of both 
species to xylem embolism (Beikircher et al., 2010). Larix decidua apparently follows 
an “anisohydric” strategy and maintains high water loss (Anfodillo et al., 1998; Dulam-
suren et al., 2009; Matyssek et al., 2009), and hence also a higher CO2 uptake rate than 
spruce and pine (Table 3). An anisohydric strategy to withstand high evaporative  
demand and low soil water availability, however, is not critical until severe soil 
drought can cause hydraulic collapse before finally leading to xylem cavitation  
(Breda et al., 2006).

Our our results suggest that P. sylvestris, P. abies, and L. decidua are well adapted to 
cope with low plant water availability and high evaporative demand. All selected 
species were undergoing water limitations as measured by decreasing water loss  
throughout the growing season, which is in accordance with previous findings that 
soil water availability limits tree growth within the study area (e.g., Schuster and 
Oberhuber 2013). Low water-holding capacity of the shallow stony soils, which cau-
ses fast decrease of soil water availability during rainless periods, makes our study 
area comparable to other dry inner Alpine environments, where a high vulnerability 
of P. abies and L. decidua to drought was determined by Lévesque et al. (2013).

5. Conclusions

In accordance with our hypothesis, a decline in soil water availability leads to a 
decline in Qs of P. sylvestris and P. abies. This fits to a typical water saving strategy with 
a more pronounced reduction in conductance to water vapor under limited soil wa-
ter availability. Conversely, L. decidua follows a more risky strategy to withstand soil 
water shortage and high evaporative demand. P. sylvestris and P. abies responded to 
low plant water availability in an inner alpine dry forest ecosystem by a water-saving 
strategy through a more pronounced reduction in conductance to increasing evapo-
rative demand. In this sense, pine and spruce differ from larch, which is characterized 
by a higher stomatal conductance (Table 3). We conclude from the present study that 
the water-saving strategy of P. sylvestris and P. abies may be a selective advantage to 
tolerate increasing aridity in dry inner alpine valleys. Correspondingly, limited soil 
water availability might be critical for L. decidua if aridity will increase in future. These 
results should also be taken into consideration when forecasting potential impacts 
of climate change on future forest management practices in inner alpine dry val-
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leys, because the water-saving strategy of P. sylvestris and P. abies may be a selective  
advantage as it might enable both species to tolerate increasing aridity as a result of 
global warming (IPCC 2013). Finally, long term studies are needed as the next step, 
in order to predict long term shifts in the abundance of the three selected conifer 
species under predicted climate warming.
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