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Abstract

Reliable biomass and carbon stock estimation are central to obtain reference levels 
for quantifying carbon emissions. Forest inventory data combined with remote sen-
sing data provides opportunities to map and monitor forest areas at various spatio-
temporal scales. The current research is a pilot study focussed on the biomass and 
carbon estimation and mapping of subtropical scrub forests of Khanpur range, Ha-
ripur Forest Division, Pakistan considering 20 inventory plots using Sentinel-2A and 
Landsat-8 data. Six forest areas (Garamthun, Chhoi, Moharagutta, Sanaba, Dobandi 
and Saradana) were considered covering a total area of 697.3 ha. Average biomass of 
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the assessed plots was 104.6 t/ha and mean carbon stock was 49.7 t/ha. Garamthun 
forest had the highest values for both biomass (187.30 t/ha) and carbon (87.98 t/ha) 
followed by Choi with 148.22 t/ha of biomass and 69.6 t/ha carbon respectively. The 
total estimated carbon stock for these six forest types was 43570.9  t. The biomass 
was then correlated with spectral indices computed from Sentinel 2 image (NDVI, 
SAVI, DVI, PVI and MSAVI). NDVI performed significantly well among five other indices 
with the values of R2 of 0.81 followed by 0.7 and 0.58 for SAVI and DVI respectively. 
PVI and MSAVI responded poorly to biomass as compared to the other indices with 
the value of R2 of 0.20 and 0.11 respectively. Spatial distribution of biomass was map-
ped using NDVI, which was selected as the best model based on the values of R2. 
Further, Landsat-8 was also used and the similar five indices were derived for Land-
sat-8 imagery. Finally, both the indices derived from Sentinel-2A and Landsat-8 were 
compared. Scrub forests of Khanpur showed the largest potential for carbon seques-
tration and storage. It is suggested that this method is not only used for the Haripur 
district in Khyber Pakhtunkhwa, whose forest division extends merely over the area 
of 42491 ha; rather it should be applied to the entire forest area of Pakistan for natio-
nal forest inventory. The research concluded that Sentinel 2 has the best combination 
of spectral capabilities and broad spectrum of applicability. 

Zusammenfassung

Zuverlässige Schätzungen von Biomasse und Kohlenstoff sind sehr wichtig für die 
Quantifizierung der Treibhausgasemissionen. Waldinventurdaten in Kombination 
mit Fernerkundungsdaten ermöglichen das großflächige Monitoring von Waldgebie-
ten auf unterschiedlichen räumlicher und zeitlicher Auflösung. Diese Pilotstudie kon-
zentrierte sich auf die Biomasse- und Kohlenstoffschätzung und deren Kartierung für 
die subtropischen Buschwälder in der Khanpur Region in Pakistan (Forstabteilung 
Haripur) mittels 20 Probeflächen und Sentinel-2A und Landsat-8 Daten. Mit sechs 
Waldgebieten (Garamthun, Chhoi, Moharagutta, Sanaba, Dobandi und Saradana) 
wurde insgesamt eine Fläche von 697.3 ha untersucht. Durchschnittliche Biomasse 
der untersuchten Probeflächen war 104.6 t/ha und der Kohlenstoffvorrat war 49.7 t/
ha. Garamthun weist die höchsten Werte auf, sowohl für Biomasse (187.30 t/ha) als 
auch für Kohlenstoff (87.98 t/ha), gefolgt von Choi mit 148.22 t/ha Biomasse und 
69.6 t/ha Kohlenstoff. Der Kohlenstoffvorrat für alle 6 untersuchten Wälder wurde auf 
43570.9 t geschätzt. Die Biomasse wurde dann korreliert mit spektralen Vegetations-
indizes errechnet aus Sentinel-2A Daten (NDVI, SAVI, DVI, PVI und MSAVI). NDVI liefert 
die besten Ergebnisse mit einem Bestimmtheitsmaß (R2) von 0.81, gefolgt von R2 0.7 
und 0.58 für SAVI und DVI. PVI und MSAVI haben am schlechtesten abgeschnitten im 
Vergleich zu den anderen Indizes mit R2 von 0.20 und 0.11. Die räumliche Verteilung 
von Biomasse und Kohlenstoff wurde mittels NDVI abgebildet. Außerdem, wurden 
aus Landsat-8 ebenfalls die 5 Vegetationsindizes berechnet und mit den Ergebnissen 
von Sentinel-2A verglichen. Die Buschwälder von Khanpur weisen großes Potenzi-
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al zur Kohlenstoffbindung und -speicherung auf. Es wird empfohlen diese Methode 
nicht nur für die Haripur Region im Khyber Pakhtunkhwa zu verwenden, deren Wald-
fläche bloß 42491 ha beträgt, sondern für die gesamte Waldfläche von Pakistan als 
Waldinventur zu verwenden. Unsere Untersuchungen kommen zu dem Schluss, dass 
Sentinel-2A-Daten am besten dafür geeignet sind durch deren hohe Genauigkeit 
und breites Anwendungsspektrum.

1. Introduction

Deforestation and forest degradation contributes to increasing carbon dioxide con-
centration in the atmosphere. CO2 acts as a major greenhouse gas. Globally, forest 
area has decreased from 31.6% in 1990 to 30.6% in 2015 (FAO, 2015) particularly due 
to anthropogenic activities thereby contributing to global climate change. Alternati-
vely, afforestation and forest restoration activities reduce GHG emissions from forest 
ecosystem. It is estimated that with decline in deforestation rate between 2001 and 
2015, the carbon emissions from forests have also been decreased by more than 25 % 
globally (FAO, 2015). Reducing Emissions from Deforestation and Forest Degradation 
(REDD+) is an initiative to reduce the deforestation, forest degradation and carbon 
emissions from forest ecosystems in developing countries. REDD+ implementation 
requires appropriate estimates of forest biomass and quantifying carbon stocks.

Field measurements provide to most reliable estimates of forest carbon (Tomppo et 
al., 2010). On the other hand, its applicability to larger areas is restricted by large ex-
penses, time and labor constraints. Remote sensing is considered to be a consistent 
and dependable solution to these challenges, as it provides large area coverage in 
both spatial and temporal domains (Shi, 2010; Du et al., 2014). These methods not 
only accelerate data collection process but also exactly monitor and map various fo-
rest characteristics at local and regional scale. (Lu, 2006;  Rabindranath et al., 2008). 
By linking remote sensing with forest inventory data, reliable large scale maps of fo-
rest characteristics can be produced (Moreno et al., 2017). Although, remote sensing 
provides sound biomass estimates; but few errors like geometric, radiometric and 
atmospheric distortions may lead to overestimation or underestimation of forest 
features while dealing with different resolutions (Kindermann et al., 2008; Zheng et 
al., 2008). However, careful validation is needed to prove the reliability and accuracy. 
Options involve cross validation, validation with an independent dataset (not used 
for model development) or evaluation with other datasets (Mayaux et al., 2006; Friedl 
et al., 2010; Simard et al., 2011; DiMiceli et al., 2011; Galidaki et al., 2017). United Na-
tions Framework Convention on Climate Change (UNFCCC) has recommended the 
methodological guidance for REDD+ activities to use remote sensing and ground-ba-
sed carbon measurements for carbon biomass estimation, GHG emissions and forest 
area changes due to deforestation and forest degradation (Decision 4/CP.15, UNFCCC 
2014). 
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Remote sensing data such as Landsat are widely for forest mapping, monitoring and 
biomass assessment (Hansen et al, 2013; Gasparri et al, 2010), its free data availability, 
spatial coverage and temporal capabilities make Landsat one of the most extensive 
and boundless used data for vegetation analysis (Gizachew et al, 2013). The biomass 
estimation through Landsat is commonly through establishing relationships between 
above ground biomass and different vegetation indices (Lu 2005; Nelson et al, 2000; 
Foody et al, 2003). Sentinel 2 is the state of the art sensor providing products with 
wide spatial coverage, high spatial and temporal resolution (Fletcher, 2012; Drusch 
et al., 2012) for many of its applications in forestry sector; such as forest classification 
(Immitzer et al., 2016), biomass estimation and mapping (Chang and Hoshany, 2016), 
biophysical variables (Frampton et al., 2013; Sakowska et al., 2016; Korhonen et al., 
2017), forest burn area management (Verhegghen et al., 2016) and species mapping 
(Ng et al., 2017). The Sentinel 2 product provides high resolution with four bands at 
10 meters resolution; Blue-Band 2, Green-Band 3, Red-Band 4 and NIR-Band 8) and 
20 meters resolution; NIR-Band 8A (Fletcher, 2012; Drusch et al.,2012; Adnan, 2017). 
Band resolutions, band widths and central wavelength information of Sentinel-2A 
are summarized in Table 1.These bands cover major portion of vegetation absorption 
and reflectance behavior. Other bands such as Band 5,6 and 7 provide information 
like Red-edge properties to analyze vegetation dynamics (Chen et al., 2007; Cao et al., 
2016) and Band 12 and 13 provide information about canopy water content (Ceccato 
et al., 2001; Hunt and Qu, 2012;). Moreover, these bands are also useful to develop 
strong relationship with forest attributes. Vegetation and forest attributes can be 
smoothly assessed by computing relationship between spectral indices and ground 
based measurements (Barati et al., 2011). Several studies applied Sentinel 2 spectral 
indices on vegetation and obtained significant results with acceptable accuracy (De-
legido et al., 2011; Atzberger et al., 2012; Frampton et al., 2013; Vuolo et al., 2016; Ma-
jasalmi & Rautiainen., 2016). Presently, compared to other sensors such as LANDSAT, 
ASTER, SPOT and MODIS which have been used extensively for biomass estimation, 
Sentinel 2 sensor is very much less explored for its forestry applications specifically 
for biomass estimation. 

This study will discover Sentinel 2 sensor product and evaluate its potential to esti-
mate biomass by deriving various indices and spectral properties. The objectives of 
the study include; (1) estimate biomass and carbon storage in six selected forest areas 
(2) evaluation of several indices and to extrapolate the most suitable index for study 
area (3) compare various Sentinel-2A indices with Landsat-8 derived indices.
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2. Materials and Methods

2.1 The study area

The Khanpur forest range falls under the jurisdiction of Haripur forest division of dis-
trict Haripur as shown in Fig.1. Haripur is administrative unit and located in southern 
part of Khyber Puktunkhwa province of Pakistan. Geographically, Haripur is situated 
at latitude 33° 44' to 34° 22' and longitude 72° 35' to 73° 15'.  The total area of district 
Haripur is 1725 km2 with 466 inhabitants per km2. Agriculture is main livelihood of ru-
ral population. The district has 77370 acres arable area. The total forest area of district 
Haripur is 42491 hectares which forms 23.1% of the total area (Working Plan, 2008). 
For better management, Haripur forest division is further subdivided in five forest 
ranges namely; Haripur mian, Makhnial, Ghazi , Satora and Khanpur range. Generally 
the tract is mountainous. The elevation varies from 625 m to 2031 m. The parallel 
mountainous ridges running from north east to south west with intervening nullahs 
constitute Satura, Makhnial and Khanpur ranges. Haripur range is mostly plain. Gha-
zi Range is partly is plain and partly mountainous. Due to mountainous nature of 
the tract, climate varies from place to place depending upon the altitude. Due to 
low elevation Khanpur, Haripur and Ghazi have hot summers and very cold winters. 
Makhnial and Satura ranges have pleasant summers and less severe winters. Snowfall 
and winter rains are received from December to March. Major portion of the annual 
precipitation is received in monsoon season that is the seasonal shift in the direction 
of wind followed by heavy precipitation. In Pakistan, normal duration of monsoon 
rainfall is from June to October. The district Haripur has two major forest types i.e. 
Sub-tropical Chir Pine and Sub-tropical scrub forests. This research study focused six 
reserved forest areas of only Khanpur scrub range which include Chhoi, Garamthun, 
Mohara-gutta, Sanaba, Dobandi and Saradana. The total area of Khnapur range is 
1588.36 ha, out of which 158.24 ha is blank and the total area of above-mentioned six 
sampled forest areas is 697.3 ha (Working of Haripur reserved forests, 2008).
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Figure 1: Overview and location of study area

Abbildung 1: Übersicht und Lage des Untersuchungsgebietes
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2.2 Forest Inventory 

A total of 20 circular sample plots of 0.1 ha area were randomly laid out in the forest 
and all the trees inside the circle were enumerated as shown in Figure 2. Locations 
of all plots were recorded using Global Positioning System (GPS) receiver. Sampling 
and measurements were conducted with great care as accuracy of biomass depends 
upon these variables (Chave et al., 2004; Samalca, 2007; Molto et al., 2013). Diameter 
at breast height (DBH) and height of all trees in a sample plot were measured for 
above ground biomass estimation. Six species encountered during inventory which 
include Acacia nilotica, Acacia modesta, Olea ferrugineae, Zizyphus jujuba and Ficus 
palmata, whereas Dodonaea viscosa is the main shrub species in the area. All the ne-
cessary materials that were used for data collection and further processing are given 
in Table 1. 

Figure 2: Sentinel-2A imagery and inventory plots

Abbildung 2: Sentinel 2A-Bild und Inventurplots

Table 1: Sentinel 2 Bands Description (ESA, 2010)

Tabelle 1: Beschreibung der Sentinel 2-Spektralbänder (ESA, 2010)
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For the carbon inventory all the trees with a DBH of ≥ 5 cm were measured except 
that of Dodonaea viscosa whose basal diameter was found to be less than < 5 cm so 
all plants of that species were measured at the base. Biomass of Dodonaea viscosa 
was determined using the following allometric equation (Litton, 2008):

 

 
where 	  
AGB is the aboveground biomass in g and D is the diameter at base in mm. 

The heights of trees were measured with Haga Altimeter, diameter at breast height 
(1.37 m) with Diameter tape, radius of the circular plot with measuring tape and an-
gles (degrees) with Suunto compass. Odd shaped trees i.e. buttressed or forked trees 
were also measured keeping in mind all the necessary points. Species volume was 
calculated using the local volume tables prepared by Pakistan Forest Institute, Pesha-
war. The volume was calculated from diameter, height classes and form factor men-
tioned in volume table by using the formula (Equation 2). Volume for all species was 
estimated by assuming conical shape stem.

 
where 	  
Vol is the volume in m3, BA is the basal area in m2 and FF is form factor.

As there were six species under this research study, separate volume table for each 
one was used except Dodonaea viscosa whose biomass was directly calculated owing 
to the fact that diameter at base was too small therefore biomass was calculated di-
rectly using the equation (Litton, 2008). Volume of all other species was calculated by 
comparing diameter classes against their volumes mentioned in available literature 
i.e. “local metric volume tables prepared for Farmlands of Charsadda.” The volume of 
each plot was calculated by adding the volume of entire individual trees in that sam-
ple plot. The average volume per plot for every specie was also determined by adding 
up volume of all trees in that sample plot and dividing it with the total number of 
sample trees in that plot. Thus the volume of each sample plot was converted into 
volume/ha by multiplying the volume of each plot with 10, because area of each plot 
was 0.1 ha. Furthermore, in order to obtain the total volume of the Khanpur forests; 
volume/ha was multiplied with total number of ha in that forest. The above ground 
biomass was calculated by multiplying volume with basic wood density and biomass 
expansion factor (Schoene.,  2002), to expand estimates to other non-merchantable 
parts of the tree (Milne et al., 1998; Fukuda et al., 2003; Penman et al., 2003). The for-
mula is given below:
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where	  
V is the timber volume in m3 and

BWD  is the basic wood density in kg/m3;

BEF is the biomass expansion factor which is equal to 1.4. 

For this research study, separate basic wood density values for each species were ap-
plied which are given in Table 3. It is generally considered that about half of the dry 
biomass consists of carbon (Roy et al., 2001, Malhi et al., 2004). Thus the dry biomass 
can be converted to carbon stock by multiplying it with 0.47 (Paustian et al., 2006). 
Below ground biomass (BGB) was estimated by multiplying the above ground bio-
mass with 0.26 as per IPCC guidelines (Ravindranath and Owtwald, 2008). IPCC is an 
acronym for Intergovernmental Panel on Climate Change. It provides the methods 
for the estimation of changes in carbon stocks and greenhouse gas emissions along 
with the changes in biomass content on forest lands. The dry biomass (above ground 
and below ground) can be converted to carbon stock by multiplying it with 0.47 
(Paustian et al., 2006) to get Above Ground Carbon stocks (AGC) and Below Ground 
Carbon stocks (BGC) as it is generally considered that about half of the dry biomass 
consists of carbon (Roy et al., 2001, Malhi et al., 2004). The carbon stock was then 
converted into CO2 equivalent by multiplying it with 3.66 (Pearson et al., 2007) which 
is the ratio of carbon atom in the molecular weight of CO2. Thus, the total amount of 
CO2 sequestered was determined. The quantity of carbon stocks facilitates the de-
termination of total number of carbon credits as each carbon credit is equal to one 
metric ton of carbon dioxide. These carbon credits calculations are important part in 
national Greenhouse gases (GHGs) mitigation. Moreover, after assuming the price of 
a carbon credit, one can also estimate the revenue to be generated from these car-
bon credits. In this study, the price of carbon has been assumed to be 30 US$ per ton 
of carbon (Nordhaus, 2008).

2.2.1 Sentinel-2 and Landsat 8 Images Processing

The present study used Sentinel-2 imagery for biomass estimation because Senti-
nel-2 data product has overcome limitation of resolution (Gascon and Berger, 2007) 
that was previously provided by other open source sensors. The imagery was dow-
nloaded from Copernicus Sentinel Scientific Data Hub (https://scihub.copernicus.
eu/) for Khanpur range (Dated October 28, 2016). The Sentinel product was named as 
S2_MSI_Level-1C with processing Level-1C. Product bands ranged from 443 to 2190 
nm with Band 2, 3, 4 and 8 in 10 m, Band 5, 6, 7, 8A, 11 and 12 in 20 m and Band 1, 
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9 and 10 in 60 m. The product area was approximately 100 km2 which covered not 
only the entire Haripur but also extended to other neighbor districts such as Rawal-
pindi, Abbottabad, Mansehra and Swabi. The primary step was image pre-proces-
sing before its use for biomass estimation purpose (Roy et al., 2016). The purpose 
was to avoid effects of atmospheric scattering or cloud cover shadows, to aid visual 
interpretation and to extract plenty of information from remotely sensed imagery. 
Pre-processing includes radiometric, geometric and terrain correction respectively. 
Sentinel-2 images were preprocessed in SNAP Tool Box (Egbers, 2016; Martins et al., 
2017). Sen2Cor-2.3.1 is a plugin in SNAP tool box for atmospheric correction of the 
Sentinel-2 images. Level 1C product can be converted into atmospherically corrected 
Level 2A product (Wilm, 2016). The processing of Level 1C product includes cloud 
detection, scene classification, Aerosol optical thickness and water vapor content, all 
these were done by Sen2Cor 2.3.1   processor to obtain bottom of atmosphere con-
version (BoA) (Knorn et al., 2015; Louis et al., 2016; Martins et al., 2017). Sub-setting 
of image was done for the area of interest where forest inventory was conducted. 
Furthermore, resampling of 20 m bands was done and inventory plots were overlaid 
(Figure 2). According to Chrysafis et al. 2017, different vegetation indices from Senti-
nel-2A product were computed using SNAP Tool box to assess biomass. Various indi-
ces, their formulae and Sentinel-2 bands were shown in Table 2.  AGB (Above ground 
biomass) shape file created via ArcGIS 10.3 was overlaid on corresponding vegetation 
indices of both the acquired images. The values of masked pixels by inventory plots 
were extracted for all the indices. Similarly, The Landsat-8 Product was downloaded 
from USGS Earth Explorer (https://earthexplorer.usgs.gov/) for Khanpur range. The 
preprocessing was the first step; the ENVI 5.3 was used for preprocessing of the Land-
sat-8 imagery, including Radiometric Calibration, Reflectance Correction and Dark 
Subtraction. Further, the rectified image was used to compute various indices such 
NDVI, SAVI, MSAVI, PVI and DVI, as previously computed for Sentinel-2A imagery. The 
AGB point data was imported on these indices and the values of masked pixels was 
extracted.
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Table 2: Vegetation Indices for Sentinel-2A and Landsat-8 Product

Tabelle 2: Vegetationsindizes für Sentinel-2A und Landsat-8 Daten

Table 3: Basic Wood Density of important species in the study region (Sheikh, 1993)

Tabelle 3: Holzdichte wichtiger Baumarten des Untersuchungsgebietes (Sheikh, 1993)
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2.3. Statistical Analysis 

Scatter plots were generated to analyze the relationship between biomass and indi-
vidual indices. Correlation and regression analysis were performed between biomass 
and spectral indices. Different models were established (linear, polynomial, power, lo-
garithmic and exponential). Coefficient of determination (R2) was calculated for each 
model.  As a result, model fulfilling the condition of highest value of R2, was selected 
for effective biomass estimation and generation of biomass map as well. 

3. Results and Discussion

3.1 Stem Number

The stocking of the six scrub forests have been summarized in Table 6. The total forest 
area in these six villages is 697.3 ha consisting of total 759783 trees. The respective fo-
rest areas of the sampling areas were obtained from Working Plan of Haripur (2008). 
Data shows that density was highest in Garamthun with 1350 trees per ha followed 
by Dobandi with 880 trees per ha (Table.6). The Mohara Gutta with 650 trees per ha 
was found to be least stocked forest area. 

3.2 Volume (m3) (Plot level and Forest-wise)

The total trees per ha in the study area indicating that the forests were well stocked. 
As per Table 4, Acacia modesta is the species with the highest volume of 33.19 m3 
per ha followed by Olea ferruginaea whose volume equals to 22.37 m3 per ha. The 
volume of Acacia nilotica, Zizyphus jujuba and Ficus palmata were calculated as 0.99, 
0.73 and 0.38 m3 per ha respectively. The total volume in the study area was estima-
ted as 51045 m3 for five species except Dodonaea viscosa because local volume table 
was not available. The volume for each forest is summarized in Table 6. It was found 
that forest of Garamthun contains highest volume of 102.5 m3/ha followed by Chhoi, 
Mohara-gutta, Sanaba and Dobandi forests with 80.2  m3/ha, 31.2  m3/ha, 30.5 m3/ha 
and 29.1 m3/ha respectively. Whereas, Saradana forest had lowest volume with more 
than 20.7 m3/ha. (Nizami, 2012) studied different species of subtropical broadleaved 
evergreen forests (scrub) had major species Acacia modesta and Olea ferruginaea 
and reported volume per hectare (m3/ha) at two different study sites (Kherimurat and 
Sohawa) with total volume (m3/ha) of 12.86 and 11.40 respectively. Regarding com-
position of tree species in study area, Acacia modesta is ranked highest with 57 % 
followed by Olea ferrugineae with 39 % whereas Acacia nilotica, Zizyphus jujuba and 
Ficus palmata were last in the ranking. 
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Table 4: Species-wise volume for all species except Dodonea viscosa but its base diameter was directly 
converted to biomass by using allometric equation

Tabelle 4: Baumvolumen aller Baumarten (außer für Dodonea viscosa deren Durchmesser direkt 
mittels allometrische Gleichung in Biomasse umgerechnet wurde)

3.3 Biomass and Carbon Stocks (Plot & Forest level) 

The highest AGB and BGB was found to be 148.65 and 38.65 t/ha respectively where-
as mean biomass (including both AGB and BGB) was found to be 104.6 t/ha as shown 
in Table 5. The highest estimated carbon stocks were 69.84 and 18.14 t/ha for AGC 
and ABC respectively whereas highest carbon stock (including both AGC and ABC) 
was determined as 87.98 t/ha. Carbon stock of Garamthun forest were the highest 
32931.9 t carbon followed by Choi with 4987.6 t of carbon (Table 6). Whereas, the 
values of biomass and carbon were lowest for Saradana forest with 2567 t of biomass 
and 1206.4 t of total carbon stocks respectively. The total carbon stocks for these six 
forests types were  43570.9 t. Nizami, (2012) reported mean AGB (t/ha) for two domi-
nant species (Acacia modesta and Olea ferrugineae) in two study sites (Kherimurat 
and Sohawa) as 50.93  and 40.43 t/ha respectively. In the past study reported by Ni-
zami (2012) mean carbon stocks were estimated as 25.54 and 20.23 t/ha at two sites 
(Kherimurat and Sohawa) respectively.  
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Table 5: Biomass and carbon stocks of the sample plots

Tabelle 5: Biomasse und Kohlenstoffvorrat der Probeflächen

Plot No AGB (t/ha) AGC (t/ha) BGB (t/ha) BGC (t/ha)
Total  

Biomass  
(t/ha)

Total C  
(t/ha)

1 165.2 77.64 42.9 20.16 208.1 97.81
2 201 94.47 52.3 24.58 253.3 119.05
3 141.6 66.55 36.8 17.30 178.4 83.85
4 133.6 62.79 34.7 16.31 168.3 79.10
5 118.1 55.51 30.7 14.43 148.8 69.94
6 132.5 62.28 34.5 16.22 167 78.49
7 93 43.71 24.2 11.37 117.1 55.04
8 246.8 116.00 64.2 30.17 311 146.17
9 13.1 6.16 3.4 1.60 16.5 7.76

10 45.2 21.24 11.7 5.50 56.9 26.74
11 42.1 19.79 10.9 5.12 53 24.91
12 62.3 29.28 16.2 7.61 78.6 36.94
13 23.1 10.86 6 2.82 29.2 13.72
14 41.1 19.32 10.7 5.03 51.7 24.30
15 31.9 14.99 8.3 3.90 40.2 18.89
16 50.3 23.64 13.1 6.16 63.4 29.80
17 33.4 15.70 8.7 4.09 42.1 19.79
18 26 12.22 6.8 3.20 32.7 15.37
19 32.2 15.13 8.4 3.95 40.6 19.08
20 28.1 13.21 7.3 3.43 35.5 16.69

Mean 83 39.02 21.6 10.15 104.6 49.17

Table 6: Total stem number, volume, biomass and carbon stocks of the examined forests

Tabelle 6: Gesamtanzahl der Bäume, Volumen, Biomasse und Kohlenstoffvorräte der untersuchten 
Wälder
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3.4 Carbon Sequestration Potential 

The CO2 equivalent sequestered by these forests was determined by multiplying car-
bon stock with 3.66. Thus the total amount of CO2 sequestered by these forests was 
159374 t. This is the resulting number of carbon credits as one carbon credit is equal 
to 1 t CO2¬. Consequently, if the price of one carbon credit is assumed to be 30 US$ 
(Nordhaus, 2008), then the total worth of these forests in terms of carbon sequestra-
tion is 4781220 US$.

3.5 Testing Spectral Indices

Different vegetation indices were assessed for their correlation with above ground 
biomass values. There are several bands combinations for Sentinel-2A data (Table 2). 
Results obtained for different regression models for each index are shown in Table 7. 
Among these indices NDVI has the highest value of R2 of 0.81, followed by SAVI and 
DVI with 0.70 and 0.58 respectively. Similarly, applying various regression models (li-
near, polynomial, power, logarithmic and exponential) the values of R2 change as per 
data behavior and model assumptions. Landsat-8 imagery indices are summarized in 
Table 7. Three Landsat-8 indices; NDVI, SAVI and DVI gave low values of R2 as com-
pared to Sentinel-2A indices. However, two Landsat-8 indices (MSAVI and PVI) obtai-
ned much higher values of R2 in comparison to Sentinel-2A. Values of R2 of all Land-
sat-8 indices are tabulated (Table 7). Vafaei et al., (2018) reported that integration 
of Sentinel-2A with ALOS-2 PALSAR-2 can enhance biomass estimation with greater 
accuracy. Among these two biomass estimation of Sentinel-2A was more accurate. 
Adnan, (2017) reported that indices computed from Sentinel-2A have potential to 
estimate biomass in contrast to vegetation indices of other sensors. Coefficient of de-
termination of NDVI depicted highest changes from 0.62 to 0.81 when the model was 
switched from linear to polynomial, followed by SAVI and DVI. Other indices MSAVI 
and PVI have revealed fewer changes while using different models. Scatterplots of all 
indices and their best models are shown in Figure 4. Whereas, scatterplots of all five 
indices are in Figure 5. The summary of the linear model for all indices is presented 
(Table 8). It explains that NDVI obtained the highest value of R² (0.71) followed by 
the SAVI and DVI. Comparative visualization of all indices with Sentinel-2A product is 
shown in Figure 3. NDVI map was relatively most appropriate to map biomass among 
other indices.



Seite 108	 A. Ali, S. Ullah, S. Bushra, N. Ahmad, A. Ali, M. A. Khan

Table 7: Coefficient of Determination (R2) of different models for Sentinel-2A and Landsat 8 Products 

Tabelle 7: Bestimmtheitsmaß (R2) von verschiedener Modellen und Vegetationsindices für Sentinel-
2A und Landsat-8 Daten 

Table 8: Summary Statistics of Linear Model for Sentinel-2A

Tabelle 8: Statische Kennzahlen des linearen Modells für Sentinel-2A
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Figure 3: Comparison of Sentinel-2A spectral indices with Sentinel-2A RGB image

Abbildung 3: Vergleich von Sentinel-2A Vegetationsindizes mit Sentinel-2A RGB-Bild
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Figure 4: Scatterplots of Sentinel-2A spectral indices and biomass

Abbildung 4: Streudiagramm der Sentinel-2A Vegetationsindizes und Biomasse 
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Figure 5: Scatterplots of Landsat-8 spectral indices and biomass

Abbildung 5: Streudiagramm der Landsat-8 Vegetationsindizes und Biomasse

 

3.6 Mapping of Biomass 

Among the various indices, NDVI performed as best predictor to estimate and map 
biomass of study sites. Therefore, biomass map was produced using raster calculator 



Seite 112	 A. Ali, S. Ullah, S. Bushra, N. Ahmad, A. Ali, M. A. Khan

in ArcGIS 10.3. Linear Model of both Sentinel-2A and Landsat-8 was used to develop 
biomass and carbon stock maps. Comparison of both maps for Sentinel-2A and Land-
sat 8 is shown in Figure 6. Moreover, high correlation was shown between predicted 
and observed biomass with the value of R2 (0.85) and Root Mean Square (RMSE) was 
26 t/ha based on NDVI regression equation (linear model) for Sentinel-2A.

Figure 6: Biomass and Carbon Stocks Map for Sentinel-2A and Landsat-8

Abbildung 6: Biomasse- und Kohlenstoffvorräte für Sentinel-2A und Landsat-8
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4. Conclusion

The study suggested that Sentinel-2A product has considerable potential to estima-
te biomass and map forest areas. The Sentinel-2A product has comparatively large 
spatial coverage and high resolution to perform efficiently for estimation of biomass 
than other open source sensors data products. In this study, three indices (NDVI, DVI, 
SAVI) of Sentinel-2A performed better as compared to indices derived by LANDSAT-8. 
However, two indices (PVI and MSAVI) had a poor performance. Further researches 
should be conducted to utilize Sentinel-2A data for deriving various forests attributes 
to evaluate its role in controlling climate change and to get effective results after its 
combination with forest inventory data. Such studies have potential applications in 
integration of remote sensing and forestry inventory for REDD+ readiness and imple-
mentation in study area (Chakraborty, 2010). The global data availability of Sentinel-2 
and Landsat-8 data products shows great potential for regional and global scales  
biomass and carbon mapping and monitoring and can be used for European forests 
as well (Neumann et al., 2016).

The study concluded that scrub forest show great potential for carbon sequestration 
and storage. Thus, it can be considered vital in climate change mitigation in Pakistan. 
Khanpur sub-tropical scrub forest is of paramount significance as it stores suitable 
amount of carbon, and seemed to be unobstructed from any sort of anthropogenic 
influence. Thus study measured the worth of these forests in terms of carbon seques-
tration, showing that there is a great potential of CO2 sequestration and evaluated 
their environmental role in combating climate change. Hence, it is concluded that 
by raising and protecting these forests, a large amount of carbon can be sequestered 
in future. Therefore, supplementary carbon credits can be earned through carbon 
trading under REDD+ forest management (Reducing Emissions from Deforestation 
and forest Degradation). 

References

Adnan MS (2017). Integrating Sentinel-2A derived indices and terrestrial laser scanner 
to estimate above ground biomass/carbon in Ayer Hitam tropical forest, Malaysia, 
Master of Science, University of Twente, The Netherlands.

Atzberger C, Richter K (2012). Spatially constrained inversion of radiative transfer mo-
dels for improved LAI mapping from future Sentinel-2 imagery. Remote Sens Envi-
ron 120:208-218.

Barati S, Rayegani B, Saati M, Sharifi A, Nasri M (2011). Comparison the accuracies of 
different spectral indices for estimation of vegetation cover fraction in sparse vege-
tated areas. The Egyptian Journal of Remote Sensing and Space Science 14(1):49-
56.

Cao Q, Miao Y, Shen J, Yu W, Yuan F, Cheng S, Huang S, Wang H, Yang W, Liu F (2016). 



Seite 114	 A. Ali, S. Ullah, S. Bushra, N. Ahmad, A. Ali, M. A. Khan

Improving in-season estimation of rice yield potential and responsiveness to top-
dressing nitrogen application with Crop Circle active crop canopy sensor. Precis 
Agric 17(2):136-54.

Ceccato P, Flasse S, Tarantola S, Jacquemoud S, Gregoire JM (2001). Detecting vegeta-
tion leaf water content using reflectance in the optical domain. Remote Sens Envi-
ron 77(1):22-33.

Chakraborty, D. (2010). Small holder’s carbon forestry project in Haryana India: issues 
and challenges. Mitigation and adaptation strategies for global change, 15(8), 899-
915.

Chang J, Shoshany M (2016). Mediterranean shrublands biomass estimation using 
Sentinel-1 and Sentinel-2.  IEEE International Geoscience and Remote Sensing 
Symposium (IGARSS), Beijing Jul 10 2016, pp. 5300-5303 

Chave J, Condit R, Aguilar S, Hernandez A, Lao S, Perez R (2004). Error propagation 
and scaling for tropical forest biomass estimates. Philos T Roy Soc B 359(1443):409-
20.

Chen JC, Yang CM, Wu ST, Chung YL, Charles AL, Chen CT (2007). Leaf chlorophyll con-
tent and surface spectral reflectance of tree species along a terrain gradient in Tai-
wan’s Kenting National Park. Bot Stud 48:71-77.

Chrysafis I, Mallinis G, Siachalou S, Patias P (2017). Assessing the relationships between 
growing stock volume and Sentinel-2 imagery in a Mediterranean forest ecosys-
tem. Remote Sens Lett 8(6):508-17.

Decision 4/CP.15, UNFCCC 2014, Key decisions relevant for reducing emissions from 
deforestation and forest degradation in developing countries (REDD+) https://
unfccc.int/files/land_use_and_climate_change/redd/application/pdf/compila-
tion_redd_decision_booklet_v1.1.pdf, Accessed on July 22, 2017.

Delegido J, Verrelst J, Alonso L, Moreno J (2011). Evaluation of sentinel-2 red-edge 
bands for empirical estimation of green LAI and chlorophyll content. Sensors 11(7): 
7063-7081.

DiMiceli CM, Carroll ML, Sohlberg RA, Huang C, Hansen MC, Townshend JRG (2011). 
Annual Global Automated MODIS Vegetation Continuous Fields (MOD44B) at 250 
m Spatial Resolution for Data Years Beginning Day 65, 2000 - 2010, Collection 5 
Percent Tree Cover.

Drusch M, Del Bello U, Carlier S, Colin O, Fernandez V, Gascon F, Hoersch B, Isola C, 
Laberinti P, Martimort P, Meygret A (2012). Sentinel-2: ESA's optical high-resolution 
mission for GMES operational services. Remote Sens Environ 15;120:25-36.

Du L, Zhou T, Zou Z, Zhao X, Huang K, Wu H (2014). Mapping forest biomass using 
remote sensing and national forest inventory in China. Forests 5(6): 1267-1283.

Egbers R (2016). Sentinel-2 data processing and identifying glacial features in Senti-
nel-2 imagery, TU Delft, University of Technology, The Netherlands.

ESA (2010) GMES Sentinel-2 Mission required document, http://esamultimedia.esa.
int/ docs/GMES/Sentinel-2_MRD.pdf 

FAO Global Forest Resources Assessment 2015, ISBN 978-92-5-109283-5
Fletcher K (2012). Sentinel-2 ESA’s Optical High-Resolution Mission for GMES Operatio-

nal Services. Leiden, the Netherlands, ESA Communications.



	 Quantifying forest carbon stocks by integrating satellite images and forest inventory data�Seite 115

Frampton WJ, Dash J, Watmough G, Milton EJ (2013). Evaluating the capabilities of 
Sentinel-2 for quantitative estimation of biophysical variables in vegetation. Isprs J 
Photogramm 82:83-92.

Friedl M, Sulla-Menashe D., Tan B, Schneider A, Ramankutty N, Sibley A, Huang X 
(2010). MODIS Collection 5 global land cover: Algorithm refinements and cha-
racterization of new datasets. Remote Sens. Environ. 114, 168–182. doi:10.1016/j.
rse.2009.08.016

Fukuda M, Iehara T, Matsumoto M (2003). Carbon stock estimates for sugi and hinoki 
forests in Japan. Forest Ecol Manag 184(1):1-6.

Galidaki G, Zianis D, Gitas I, Radoglou K, Karathanassi V, TsakiriStrati M, Woodhouse I, 
Mallinis G (2017). Vegetation biomass estimation with remote sensing: focus on 
forest and other wooded land over the Mediterranean ecosystem. Int J Remote 
Sens 38(7): 1940-1966.

Gascon F, Berger M (2007). GMES Sentinel-2 Mission requirements document. Rapport 
technique, ESA. 

Hunt ER, Wang L, Qu JJ, Hao X (2012). Remote sensing of fuel moisture content from 
canopy water indices and normalized dry matter index. J Appl Remote Sens 6(1): 
061705-061705.

Immitzer M, Vuolo F, Atzberger C (2016). First experience with Sentinel-2 data for crop 
and tree species classifications in central Europe. Remote Sens 8(3): 166 

Kindermann GE, McCallum I, Fritz S, Obersteiner M (2008). A global forest growing 
stock, biomass and carbon map based on FAO statistics. Silva Fenn 42: 387–396.

Korhonen L, Packalen P, Rautiainen M (2017). Comparison of Sentinel-2 and Landsat 8 
in the estimation of boreal forest canopy cover and leaf area index. Remote Sens 
Environ 195:259-274.

Litton CM, Boone Kauffman J (2008). Allometric models for predicting aboveground 
biomass in two widespread woody plants in Hawaii. Biotropica. 40(3):313-320.

Louis J, Debaecker V, Pflug B, Main-Knorn M, Bieniarz J, Mueller-Wilm U, Cadau E, Gas-
con F (2016).Sentinel-2 Sen2Cor: L2A Processor for Users. InProceedings Living Pla-
net Symposium 2016 2016 (pp. 1-8). Spacebooks Online.

Lu D (2006). The potential and challenge of remote sensing-based biomass estimation. 
Int J Remote Sens 27: 1297-1328.

Main-Knorn M, Pflug B, Debaecker V, Louis J (2015). Calibration and validation plan for 
the L2a processor and products of the Sentinel-2 mission. ISPRS Int Arch Photo-
gramm Remote Sens  40(7):1249.

Majasalmi T, Rautiainen M (2016). The potential of Sentinel-2 data for estimating bio-
physical variables in a boreal forest: a simulation study. Remote Sens Lett 7(5):427-
436.

Malhi Y, Baker TR, Phillips OL, Almeida S, Alvarez E, Arroyo L, Chave J, Czimczik CI, Fiore 
AD, Higuchi N et al (2004).The above‐ground coarse wood productivity of 104 Neo-
tropical forest plots. Glob Change Biol 10(5):563-591.

Martins VS, Barbosa CC, de Carvalho LA, Jorge DS, Lobo FD, Novo EM (2017). Assess-
ment of Atmospheric Correction Methods for Sentinel-2 MSI Images Applied to 
Amazon Floodplain Lakes. Remote Sens 9(4):322.



Seite 116	 A. Ali, S. Ullah, S. Bushra, N. Ahmad, A. Ali, M. A. Khan

Mayaux P, Eva H, Gallego J, Strahler AH, Herold M, Member S, Agrawal, S, Naumov S, 
Miranda EE, De, Bella CM, Di, Ordoyne C, Kopin Y, Roy PS (2006). Validation of the 
Global Land Cover 2000 Map. IEEE Trans. Geosci. Remote Sens. 44, 1728–1739.

Milne R, Brown TA, Murray TD (1998). The effect of geographical variation of planting 
rate on the uptake of carbon by new forests of Great Britain. Forestry. An Interna-
tional Journal of Forest Research 71(4):297-309.

Molto Q, Rossi V, Blanc L (2013). Error propagation in biomass estimation in tropical 
forests. Methods Ecol Evol 4(2):175-183.

Moreno A, Neumann M, Hasenauer H (2017). Forest structures across Europe. Geosci. 
Data J. 4, 17–28. doi:10.1002/gdj3.45

Müller-Wilm U (2016). Sentinel-2 MSI—Level-2A Prototype Processor Installation and 
User Manual. Telespazio VEGA Deutschland GmbH: Darmstadt, Germany.

Neumann M, Moreno A, Mues V, Härkönen S, Mura M, Bouriaud O, Lang M, Achten WM, 
Thivolle-Cazat A, Bronisz K, Merganič J. Comparison of carbon estimation methods 
for European forests. Forest Ecology and Management. 2016 Feb 1;361:397-420.

Ng WT, Rima P, Einzmann K, Immitzer M, Atzberger C, Eckert S (2017). Assessing the 
Potential of Sentinel-2 and Pléiades Data for the Detection of Prosopis and Vachel-
lia spp. in Kenya. Remote Sens 9(1):74.

Nizami, S. M. (2012). The inventory of the carbon stocks in sub tropical forests of Pa-
kistan for reporting under Kyoto Protocol. Journal of Forestry Research, 23(3), 377-
384.

Nordhaus W (2008). A Question of Balance: Weighing the Options on Global Warming 
Policies, Foreign Affairs. Yale University Press, New Haven & London. doi:10.1089/
acm.2010.0309

Paustian K, Ravindranath NH, van Amstel AR (2006) IPCC Guidelines for National Green-
house Gas Inventories. Volume 4: Agriculture, Forestry and Other Land Use Part 2, 
http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html

Pearson TR, Brown SL, Birdsey RA (2007). Measurement guidelines for the sequestra-
tion of forest carbon, USDA Forest Service.

Penman J, Gytarsky M, Hiraishi T, Krug T, Kruger D, Pipatti R, Buendia L, Miwa K, Ngara T, 
Tanabe K, Wagner F (2003). Good practice guidance for land use, land-use change 
and forestry. Good practice guidance for land use, land-use change and forestry. 
Institute for Global Environmental Strategies, Kanagawa Prefecture, Japan

Perry  C Jr and Lautenschlager LF (1984). Functional Equivalence of Spectral Vegeta-
tion Indices. Remote Sens. Environ. 14(1-3): 169-182

Qi J, Chehbouni AL, Huete AR, Kerr YH, Sorooshian S (1994). A modified soil adjusted 
vegetation index (MSAVI). Remote Sens. Environ. 48, 119–126.

Ravindranath NH, Ostwald M (2008). Carbon inventory methods: handbook for green-
house gas inventory, carbon mitigation and roundwood production projects. 
Springer Science & Business media

Rouse  JW, Haas RH, Schell  JA, Deering DW (1973).  Monitoring vegetation systems in 
the Great Plains with ERTS. In: Third ERTS Symposium. NASA, pp. 309–317.

Roy DP, Li J, Zhang HK, Yan L (2016). Best practices for the reprojection and resampling 
of Sentinel-2 Multi Spectral Instrument Level 1C data. Remote Sens Lett 7(11):1023-



	 Quantifying forest carbon stocks by integrating satellite images and forest inventory data�Seite 117

1032.
Roy J, Mooney HA, Saugier B (2001). Terrestrial global productivity. San Diego, Califor-

nia, USA, Academic Press.
Sakowska K, Juszczak R, Gianelle D (2016).Remote sensing of grassland biophysical 

parameters in the context of the Sentinel-2 satellite mission. J Sensors 9;2016.
Samalca I (2007) Estimation of forest biomass and its error: A case in Kalimantan, In-

donesia. ITC.
Schoene D (2002). Terminology in assessing and reporting forest carbon change. InSe-

cond expert meeting on harmonizing forest-related definitions for use by various 
stakeholders. FAO, Rome 2002.

Sheikh MI. (1993). Trees of Pakistan (vol. 110). Islamabad: Pictorial Printers.  
Shi L. (2010).Changes of forest in Northeast China over the past 25 years: an analysis 

based on remote sensing technique. InRemote Sensing of the Environment: the 
17th China Conference on Remote Sensing 2010 Sep 14.

Simard M, Pinto N, Fisher JB, Baccini A (2011). Mapping forest canopy height globally 
with spaceborne lidar. J. Geophys. Res. 116, G04021. doi:10.1029/2011JG001708

Tomppo E, Gschwantner T, Lawrence M, McRoberts R (2010). National Forest Invento-
ries: Pathways for common reporting. Springer, Berlin, Germany.

Tucker  CJ (1980) . A spectral method for determining the percentage of green herbage 
material in clipped sample. Remote Sens. Environ , 9:175–181.

Vafaei, S., Soosani, J., Adeli, K., Fadaei, H., Naghavi, H., Pham, T. D., & Tien Bui, D. (2018). 
Improving Accuracy Estimation of Forest Aboveground Biomass Based on Incorpo-
ration of ALOS-2 PALSAR-2 and Sentinel-2A Imagery and Machine Learning: A Case 
Study of the Hyrcanian Forest Area (Iran). Remote Sensing, 10(2), 172.

Verhegghen A, Eva H, Ceccherini G, Achard F, Gond V, Gourlet-Fleury S, Cerutti PO 
(2016). The potential of sentinel satellites for burnt area mapping and monitoring 
in the Congo Basin forests. Remote Sens 8(12):986.

Vuolo F, Zoltak M, Pipitone C, Zappa L, Wenng H, Immitzer M, Weiss M, Baret F, Atzber-
ger C (2016). Data service platform for Sentinel-2 surface reflectance and value-ad-
ded products: System use and examples. Remote Sens.8(11):938.

Working of Haripur Reserved Forests, 2008, Forest Planning and Monitoring Center, 
Kyber Pukhtunkhwa, Pakistan.

Zheng DL, Heath LS, Ducey MJ (2008). Satellite detection of land-use change and 
effects on regional forest aboveground biomass estimates. Environ. Monit. As-
sess144: 67–79


