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Abstract

Accurate prediction of dead fuel moisture content (FMC) is critical for wildfire ma-
nagement, particularly in the Hyrcanian forests of Iran. This study evaluates the per-
formance of machine learning models—Random Forest (RF), Support Vector Ma-
chine (SVM), Gradient Boosting (GBoost), and Convolutional Neural Network (CNN) 
versus traditional linear regression methods in predicting FMC for three fuel classes 
(1-hr, 10-hr, and litter) over Golestan province, NE Iran. Using data collected from 235 
plots between March and November 2023, we incorporated meteorological variab-
les including temperature (T), relative humidity (RH), and wind speed (WS), along 
with topographic features, into the models. The results showed that multivariable 
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models considerably outperformed the univariate models, and machine learning 
models were more accurate than the linear regression models. The most accurate 
model was RF reaching an adjusted coefficient of determination (R2adj) of 97.08 and a 
relative RMSE of 5.93%, considering the training data. Meanwhile, with the test data, 
RF obtained an R2adj of 87.99, with a relative RMSE of 10.44%. Furthermore, the perfor-
mance of the SVMs is very good, with an R2adj of 85.40 for the training data and 86.86 
for the test data. In contrast, the linear regression models had lower accuracy, with 
the best performance, from univariate models being RH with a R2adj of 66.70 and a 
relative RMSE of 18.90%. Multivariable regression models combining RH, T and vapor 
pressure deficit (VPD) improved their performance, but still fell short of machine lear-
ning models. The results show that RH and VPD were the most important variables 
for FMC prediction, especially for fine fuels. The machine learning models showed 
excellent performance due to their capabilities for describing nonlinear relationships 
and performing well with high-dimensional data enhancing FMC predictions by up 
to 31% over traditional methods. This study advances the understanding of FMC dy-
namics by demonstrating the enhanced accuracy of machine learning models in FMC 
prediction, here studied for complex temperate forest ecosystems. By highlighting 
the importance of RH and VPD as critical predictors, the findings contribute to the 
growing body of knowledge on wildfire risk assessment. Still these results underscore 
the need for further research to refine models and explore their applicability in diver-
se environments and under varying climatic conditions.

Zusammenfassung

Die genaue Vorhersage des Feuchtigkeitsgehalts totem Brennmaterial (Fuel Moisture 
Content, FMC) ist entscheidend für das Wildfeuermanagement, insbesondere in den 
Hyrkanischen Wäldern Irans. Diese Studie bewertet die Leistung von maschinellen 
Lernmodellen – Random Forest (RF), Support Vector Machine (SVM), Gradient Boos-
ting (GBoost) und Convolutional Neural Network (CNN) – im Vergleich zu traditionel-
len linearen Regressionsmethoden bei der Vorhersage des FMC für drei Brennmate-
rialklassen (1-Stunde, 10-Stunde und Streu) in der Provinz Golestan, Nordost-Iran. Die 
Daten wurden zwischen März und November 2023 auf 235 Probeflächen erhoben 
und umfassten meteorologische Variablen wie Temperatur, relative Luftfeuchtig-
keit (RH) und Windgeschwindigkeit sowie topografische Merkmale. Die Ergebnisse 
zeigten, dass multivariable Modelle die univariaten Modelle deutlich übertreffen hin-
sichtlich Genauigkeit und maschinelle Lernmodelle genauer sind als lineare Regres-
sionsmodelle. Das RF-Modell erreichte die höchste Genauigkeit mit einem adjustier-
ten Bestimmtheitsmaß (R2adj) von 97,08 und einem relativen RMSE von 5,93 % für die 
Trainingsdaten. Für die Testdaten erzielte RF ein adjustiertes R² von 87,99 und einen 
relativen RMSE von 10,44 %. Auch SVM zeigte eine sehr gute Leistung mit einem ad-
justierten R2adj von 85,40 für die Trainingsdaten und 86,86 für die Testdaten. Im Gegen-
satz dazu wiesen lineare Regressionsmodelle eine deutlich geringere Genauigkeit 
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auf. Das beste univariate Modell, basierend auf RH, erreichte ein adjustiertes R2adj von 
66,70 und einen relativen RMSE von 18,90 %. Multivariable Regressionsmodelle, die 
RH, Temperatur und VPD kombinierten, verbesserten die Leistung, blieben jedoch 
hinter den maschinellen Lernmodellen zurück. Die Ergebnisse verdeutlichen, dass 
RH und VPD die wichtigsten Variablen für die FMC-Vorhersage sind, insbesondere für 
feines Brennmaterial. Die ausgezeichnete Leistung der maschinellen Lernmodelle ist 
auf ihre Fähigkeit zurückzuführen, nichtlineare Zusammenhänge zu erfassen und mit 
hochdimensionalen Daten effektiv umzugehen. Diese Modelle verbesserten die Vor-
hersagegenauigkeit des FMC um bis zu 31 % im Vergleich zu traditionellen Metho-
den. Diese Studie erweitert das Verständnis der Dynamik von FMC in Brennmaterial, 
indem sie die verbesserte Genauigkeit maschineller Lernmodelle bei der FMC-Vor-
hersage aufzeigt, insbesondere in komplexen gemäßigten Waldökosystemen. Durch 
die Hervorhebung der Bedeutung von RH und VPD als kritische Prädiktoren tragen 
die Ergebnisse zur wachsenden Wissensbasis für die Bewertung von Waldbrandrisi-
ken bei. Dennoch unterstreichen diese Ergebnisse die Notwendigkeit weiterer For-
schung, um die Modelle zu verfeinern und ihre Anwendbarkeit in unterschiedlichen 
Umgebungen und unter verschiedenen klimatischen Bedingungen zu untersuchen.

1 Introduction

The fuel moisture content (FMC) is a critical factor influencing wildfire behavior and 
management (Lewis et al., 2024). Accurate prediction of FMC helps mitigate the ad-
verse impacts of wildfires by improving preparedness and response strategies (Hou 
et al., 2024). As such, it is included in most wildfire behavior and effects models. Bro-
adly, previous studies have shown that FMC has a significant impact on ignition, the 
rate of spread (ROS), radiation efficiency, and energy release, which are essential for 
accurately assessing wildfire risk (Bilgili et al., 2019; Lee et al., 2020; Fan et al., 2023; 
Hou et al., 2024). When fuel is moist, its water content must evaporate before ignition, 
requiring more energy to sustain combustion and making it harder for fires to start, 
spread, or consume fuel (Nelson, 2001).

Traditionally, FMC prediction has relied on empirical models considering meteo-
rological and topographical variables (Kane and Prat-Guitart, 2018). In this regard, 
models of fuel moisture levels based on various weather conditions have been de-
veloped using empirical, semiphysical, or physical methods (Carlson et al., 2007; 
Matthews, 2010; Nelson, 2001; Rodrigues et al., 2024; Sharples et al., 2009). Moreover, 
Viney (1991), Nelson (2001), and Aguado et al. (2007) demonstrated the importan-
ce of relative humidity and temperature in Mediterranean regions. Zhou and Vacik 
(2017) also conducted an investigation into fuel stick moisture in coniferous forests 
of eastern Austria, revealing that fuel moisture content is heavily influenced by forest 
canopy structure, weather conditions, and seasonal variations. Masinda et al. (2021) 
developed models for predicting the Fine Fuel Moisture Code (FFMC) using meteoro-
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logical and soil variables for Pinus koraiensis, Pinus sylvestris, and Larix gmelinii fuels. 
This study showed that temperature, relative humidity, and rainfall were the main 
drivers affecting FMC values (Masinda et al., 2021). However, these models often have 
limitations in handling complex, nonlinear relationships among variables. With their 
increasing use in modeling complex, nonlinear relationships between independent 
and dependent variables, machine learning algorithms are not just theoretical con-
cepts. They are frequently applied as both process and statistical models, and their 
practical applications are becoming increasingly evident (Capps et al., 2022; Xu et 
al., 2024; Hou et al., 2024; Lyell et al., 2024). Recently, these methods have gained sig-
nificant attention in various fields, including the prediction of FMC (Jain et al., 2020; 
Hou et al., 2024). For example, Fan et al. (2023) employed a machine learning-based 
approach to predict dynamic changes in FMC for typical dead surface fuels in the 
cold temperate region of Northeast China by comparing the results with those of 
traditional equilibrium moisture content models. Similarly, Miller et al. (2023) develo-
ped a temporal convolutional network to estimate surface FMC across the continen-
tal United States. Capps et al. (2022) used a Random Forest (RF) model to estimate 
FMC in California. Common machine learning models employed for FMC prediction 
include RF, support vector machine (SVM), and gradient boosting (GBoost) models. 
All of these models have strengths and limitations. For instance, linear regression is 
straightforward and interpretable but is best suited for linear relationships; although 
computationally efficient, linear regression struggles with nonlinearities and is sensi-
tive to outliers (Jain et al., 2020). RF, which uses decision trees to mitigate overfitting, 
handles high-dimensional data well and can assess feature importance. However, 
this approach sacrifices interpretability and presents challenges in parameter tuning 
(Lee et al., 2020). SVMs, on the other hand, are adept at handling nonlinear problems 
through the use of various kernel functions, but selecting the appropriate kernel and 
parameters can be computationally expensive, especially with large datasets (Noble, 
2006). While these models are widely used individually for FMC prediction, the need 
for more comprehensive comparisons across different models is pressing. The current 
limitations in this area make it difficult to fully assess how their predictive capabilities 
vary under different conditions, highlighting the urgency of further research in this 
field.

RF and SVM are among the most popular algorithms that have been implemented. RF 
is an ensemble learning method that has been demonstrated to handle large data-
sets with numerous variables effectively, providing robust predictions even in the 
presence of noise and collinearity (Breiman, 2001). In recent decades, the Hyrcanian 
temperate forest region in Northern Iran, particularly in Golestan Province, has been 
severely affected by wildfires (Jahdi et al., 2023; Alhaj Khalaf et al., 2024). However, to 
date, no comprehensive studies have applied advanced FMC modeling techniques 
to the Hyrcanian forests of Northern Iran. These forests, with their unique climatic 
and topographical characteristics, present specific challenges for wildfire prediction. 
This study builds on the available literature to address this gap by conducting a com-
prehensive analysis of regression and machine learning models and comparing their 
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performance in predicting FMC for different time lag classes. By identifying the most 
effective parameters and modeling approaches, this research aims to contribute to 
the development of more accurate and reliable FMC prediction tools for wildfire ma-
nagement in the temperate forest ecosystems of Iran. We hypothesize that machine 
learning models, with their ability to capture nonlinear interactions, will outperform 
traditional methods and provide more accurate predictions

2 Materials and methods

2.1 Study area

This study was conducted in Golestan Province, NE Iran (30° 36' to 38° 08' N, 53° 51' to 
56° 19' E), which has an area of 20,367 km2 (Figure1). Topographically, the area ranges 
in elevation from several meters below mean sea level to approximately 3800 m ab-
ove mean sea level, which parts of the eastern Alborz Mountain Range stretch from 
west to east of the Golestan Province. 

The mean annual temperature in the study area is 16.88 °C, and the mean annual 
precipitation is 454 mm. The study area is characterized by diverse land uses, with 
forest and rangeland dominating the southern and southeastern areas. These forests 
are primarily composed of broadleaf deciduous species such as hornbeam (Carpi-
nus betulus L.), Caucasian oak (Quercus castaneifolia C.A.Mey.), Oriental beech (Fagus 
orientalis Lipsky.), Caucasian alder (Alnus subcordata C.A.Mey.), velvet maple (Acer ve-
lutinum Boiss.), Caspian honey locust (Gleditsia caspica Desf.), Wych elm (Ulmus glabra 
Huds.), lime (Tilia begonifolia Stev.), and Persian ironwood (Parrotia persica C.A. Mey-
er). In contrast, the northern and northeastern parts of the study area consist of bare 
ground and agricultural land, where crops like wheat, barley, and rice are cultivated. 
Sparse vegetation and degraded rangelands are common due to intensive agricul-
ture activities and grazing pressures. Additionally, valuable species such as Caspian 
Hyrcanian English yew (Taxus baccata L.), Mediterranean cypress (Cupressus semper-
virens var. horizontalis), boxwood (Buxus hyrcana Pojark.), and Caucasian elm (Zelkova 
carpinifolia Pall.) are considered genetic reserves of the province, emphasizing the 
ecological significance of conserving these species and the ecosystems they inhabit.
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Figure 1: Location of Golestan Province in Iran (A), and digital elevation model of the study area with the 
locations of the sampling points (B).

Abbildung 1: Lage der Provinz Golestan im Iran (A) und digitales Höhenmodell des Untersuchungs-
gebiets mit den Standorten der Probepunkte (B).

2.2 Field sampling

The three fuel classes (1-hr, 10-hr, and litter) used for this study are distinguished by 
size and moisture response time (Figure 2). 1-hr fuels consist of small twigs less than 6 
mm in diameter, which respond to moisture changes within about one hour, making 
them highly flammable and essential for rapid fire ignition and spread. 10-hr fuels 
include slightly larger twigs and branches, ranging from 6 to 25 mm in diameter, and 
they take about 10 hours to adjust to moisture changes, playing a key role in sustai-
ning fire spread after ignition. Litter fuels composed of fallen leaves, needles, and fine 
organic matter on the forest floor, mostly from dominant tree species such as Quercus 
castaneifolia and Fagus orientalis, form an often continuous fuel bed maintaining sur-
face fire spread, particularly in forested areas. These fuel classes influence critical fire 
behavior characteristics, including ignition potential, rate of spread, and fire intensity, 
which are pivotal for wildfire risk assessment and management due to their varying 
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flammability and moisture retention characteristics. The sampling period from March 
to November 2023 was chosen to capture seasonal variations in FMC, aligning with 
the fire seasons in Golestan Province (Alhaj Khalaf et al., 2022). We collected samples 
on 235 plots. Within each plot, various parameters, including fuel load for 1-hr and 
10-hr and litter class, were measured via field surveys and the cluster sampling met-
hod to ensure spatial representation across the study area, considering variability in 
topography, vegetation, and metrological characteristics, as outlined by the Forest 
Health Monitoring (FHM) method (USDA Forest Service, 2005, 2020). In this method, 
each plot featured three fuel transects radiating from the center at 30, 150, and 250 
degrees. The angles (30°, 150°, and 250°) were selected to ensure even spatial cover-
age within each plot, minimizing sampling bias. This approach follows standard pro-
cedures outlined in the FHM methodology. A 1 m × 1 m square subplot was placed 
along each transect to collect samples. These samples were weighed using a balance 
with a precision of 0.01 grams. Additionally, meteorological parameters were mea-
sured using portable devices placed at the center of each plot during sampling. The-
se data, coupled with records from 60 meteorological stations processed using the 
meteoland package (v2.1.0) in R, were utilized to estimate daily dead fuel moisture 
content. The measured meteorological data were used to estimate actual dead fuel 
moisture content values and to validate machine learning models. These field mea-
surements were critical for estimation fine-scale FMC values, while interpolated data 
from meteorological stations allowed for broader spatial and temporal analysis. The 
topographic wetness index (TWI) was also calculated based on the digital elevation 
model (DEM) in ArcGIS (10.8.1) (Eq.1).

 

α is Specific Catchment, derived from flow accumulation and b is slope (in radians), 
indicating terrain steepness.

The FMC quantifies the water content in the sample by calculating the ratio of the 
difference between the wet mass (w0) and the dry mass (wdry), as described by No-
rum (1984), using the following equation. Where dry mass was determined using the 
oven-drying method. For 1-hr and 10-hr fuels, samples were dried at 105°C for 24 
hours to ensure complete moisture evaporation, following standard protocols (Matt-
hews, 2010). Litter samples were dried at a lower temperature of 80°C for 48 hours.
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Figure 2: The fuel classess (1-hr, 10-hr, and litter) and the fuel sampling frame used for this study.

Abbildung 2: Die in dieser Studie verwendeten Brennmaterialtypen (1-Stunde, 10-Stunde und Streu) 
und der Messrahmen.

2.3 Fuel moisture content (FMC) models

Linear regression and machine learning models were used separately to predict FMC. 
Previous studies have applied these models and found them to be highly accurate 
at predicting FFMC (Alves et al., 2009; Lee et al., 2020; Masinda et al., 2021; Matthews, 
2006; Zhao, 2022). In this study, 70% of the data were used to train the models, while 
the remaining 30% were used to test and compare their performance. Models were 
constructed using the Caret, RandomForest, Keras, and XSboost packages in RStudio. 
Each model is described below.

2.4 Linear regression model

To model the relationship between meteorological variables and fuel moisture, seve-
ral different approaches and equations have been tested (Eqs 3-16).
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where FMC is the fuel moisture content, T is the air temperature (°C), RH is the air rela-
tive humidity (%), WS is the wind speed (m/s), Ln is the natural logarithm, and b0, b1, 
b2, and b3 are the regression coefficients to be estimated.

2.5 Machine learning models

This study applied several machine learning models: Random Forest (RF), support 
vector machine (SVM), gradient boosting (GBoost), and convolutional neural network 
(CNN) models. They are designed to handle complex, nonlinear relationships found in 
high-dimensional data, making them ideal for predicting FMC (Fan et al., 2023).
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2.5.1 Random Forest (RF)

RF is a method of ensemble learning based on decision-making. The method cons-
tructs and merges many decision trees for a more accurate and stable prediction (Ala-
vi et al., 2017). The RF algorithm works well on large datasets with many variables and 
yields strong predictions even in the case of noisy data with collinearity. The high 
predictive accuracy of RF makes it excel at dealing with complex nonlinear interac-
tions across different factors and dimensions. In contrast, the training time is faster. 
For example, with methods such as bagging and boosting, RF is highly resilient to 
outliers and noise and ensures robust performance. RF has been widely used to pre-
dict fine FMCs and has presented excellent outcomes in previous studies (Lee et al., 
2020; Fan and He, 2021; Masinda et al., 2021). The RF model was fine-tuned by opti-
mizing the number of trees (ntree) and the number of variables considered at each 
split (mtry). These parameters were chosen through grid search and cross-validation 
to ensure the best predictive accuracy. The model's performance was assessed using 
root mean square error (RMSE) and adjusted R² values. A quantitative assessment is 
performed to test the significance and importance of the independent variables. The 
RF model for FMC prediction can be written as follows:

 

where Tree_i(x) indicates the i-th tree prediction and N is the total number of trees in 
the forest. The final prediction from the RF model is the average of the predictions 
from all the individual trees.

2.5.2 Support Vector Machines (SVM)

The SVM is a general machine learning algorithm applicable to classification and re-
gression (Jakkula, 2020). SVM is dedicated to finding the best hyperplane that can se-
parate data points within a feature space and then finds an optimal hyperplane that 
divides the data. Using kernel functions allows SVMs to map the input feature space 
into a much higher-dimensional space in which more accurate hyperplanes can be 
identified for the solution of even intricate nonlinear problems. Therefore, the kernel 
in the study was selected as a radial basis function due to its better performance in 
wide predictive modeling contexts. Optimizing the hyperplane in SVM is determined 
by implementing a loss function and penalty mechanism. Numerous studies have 
shown the ability of SVM models to predict FMC (Fan et al., 2023; Lee et al., 2020; Ro-
drigues et al., 2024). The FMC prediction model by SVM can be expressed as follows:
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where αi are the parameters of the model, K(xi x) is the kernel function, xi are support 
vectors of the data, and b is associated with the bias. The kernel function K(xi x) deter-
mines the similarity of the input vectors.

the radial basis function (RBF) kernel was selected for its effectiveness in capturing 
nonlinear relationships. The key parameters fine-tuned were the penalty parameter 
(C) and the kernel coefficient (γ). This tuning was performed using the Caret package 
in R to balance prediction accuracy and computational efficiency.

2.5.3 Gradient boosting (GBoost)

GBoost is an ensemble learning technique used for regression and classification pro-
blems. GBoost models are built by training an ensemble of weak learners, typically 
decision trees, one per instance. The key feature of GBoost is that new learners are 
added using a functional approach. Each new learner greedily minimizes a loss func-
tion. It incrementally updates the model, giving more attention to instances that were 
previously misclassified, thereby reducing bias and variance (Shmuel et al., 2022). The 
GBoost algorithm is represented as follows:

 

where hm(x) is the individual weak learner, γm is the learning rate, and m is the total 
number of learners. By iteratively optimizing the loss function, GBoost improves the 
accuracy of FMC predictions. For GBoost, the learning rate (γ), the number of trees 
(n), and the maximum depth of each tree (d) were optimized using grid search. These 
parameters control the model's complexity and its ability to generalize.

2.5.4 Convolutional Neural Network (CNN)

A CNN is a deep learning model known to be effective for spatial data and image 
processing. A CNN uses convolution layers to extract features from input data, which 
can aid in the study of spatial patterns in FMC (Miller et al., 2023). We employed the 
CNN to forecast FMC using a range of input features. The CNN architecture, designed 
for stability and reliability, included a 1D convolution layer with 64 filters and a kernel 
size of 3, followed by batch normalization, flattening, and two fully connected layers 
with 32 and 16 units. The model was trained with the Adamax optimizer using the 
root mean square error (RMSE) as the loss function. To mitigate overfitting, we im-
plemented early stopping, which tracked the validation loss, and terminated training 
when no improvement was observed over 10 consecutive epochs. This strategy ena-
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bled the CNN to learn and generalize the relationships between the input features 
and FMC effectively.

2.6 Model evaluation

To evaluate the performance of linear regression and ML models, several statistical 
metrics are used as follows:

 
 
where R2 and R2adj are the coefficient of determination and adjusted coefficient of de-
termination, respectively; ȳ and ŷ are the observed and predicted values, respective-
ly; n and p are the number of observations and number of predictors in the model, 
respectively; RMSE% is the percentage root mean squared error, normalized by the 
mean of observed values; Sy.x is the standard error of the estimate, measuring the 
average distance that the data points fall from the fitted regression line; AIC is the 
Akaike information criterion, a measure for model comparison, balancing model fit 
and complexity; and L is the likelihood of the model, measuring how well the model 
explains the data.
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3 Results

The present study used regression and machine learning models to predict FMC for 
1-hr and 10-hr timelag classes and litter fuels. More details on the predictive perfor-
mance of the applied models, the most effective parameters, and comparisons bet-
ween different modeling approaches are given in the sections below. Table 1 provi-
des a statistical summary of the variables for which the mean FMC values were 16.37, 
19.43, and 18.49% for 1-hr, 10-hr, and litter, respectively. The FMC values ranged from 
4.20 to 27.75% at 1-hr, from 5.33 to 31.64% at 10-hr, and from 7.68 to 36.56% for litter. 
Other meteorological parameters, including temperature, precipitation, relative hu-
midity, wind speed, vapor pressure deficit, topographical features (elevation, slope, 
and topographic wetness index), and canopy cover, were recorded (Table 1).

Table 1: Summary of fuel moisture, canopy cover, fuel load, meteorological, and topographic variables 
affecting wildfire behavior.

Tabelle 1: Zusammenfassung der Brennmaterial-Feuchtigkeit, Kronenbedeckung, Brenn material-
menge, meteorologischen und topografischen Variablen, die das Waldbrandverhalten beeinflussen.

According to the correlation analysis between the different variables determined 
using the Pearson correlation coefficient (Wackerly, 2008) (Figure 3), for the 1-hr FMC, 
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the highest correlations were observed with relative humidity (RH) and temperature 
(T). Specifically, RH showed a strong positive correlation (p = 0.82), while temperature 
exhibited a strong negative correlation (p = -0.68). They also had meaningful correla-
tions for 10-hr, FMC, RH, and temperature. RH was significantly positively correlated 
(p = 0.83), and temperature was significantly negatively correlated (p = -0.57). The 
correlations with RH and temperature were slightly weaker for FMC than for 1-hr and 
10-hr FMC but still significant. For soil, FMC (FMC. S), highly significant correlations 
(p = 0.61 and p = 0.44) were observed for RH and temperature, respectively.

There were also notable correlations between the FMCs after 1-hr and 10-hr and bet-
ween the FMC and litter fuel. The 1-hr and 10-hr FMCs showed a strong positive cor-
relation (p = 0.86). Additionally, strong to moderate positive correlations were found 
between 10-hr and litter FMC (p = 0.70), between 1-hr and litter FMC (p = 0.83), and 
between soil FMC and all the other FMCs—1-hr (p = 0.22), 10-hr (p = 0.32), and litter 
FMC (p = 0.37).

 
 

Figure 3: Pearson correlation coefficient between variables affecting FMC.

Abbildung 3: Pearson-Korrelationskoeffizient zwischen den Variablen, die die Brennmaterialfeuchtig-
keit (FMC) beeinflussen.
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3.1 1-hr FMC

For the prediction of the 1-hr FMC, regression analysis showed that the multivariable 
models outperformed the single-variable models (Figure 4; Table 2). The multivaria-
ble models with temperature (T), relative humidity (RH), wind speed (WS), canopy 
cover (CC), soil FMC, vapor pressure deficit (VPD), and topographic wetness index 
(TWI) achieved the highest accuracy (R2adj= 91, relative RMSE= 9.24%; SY.x= 1.55 for 
the training data and R2adj= 83.37, relative RMSE= 13.18%; SY.x= 2.30 for the test data). 
The multivariable models combining T, RH, and CC also showed improved accuracy, 
with an R2adj of 76.61 and an RMSE of 15.45% for the test data. For the single-variable 
models, the model using RH alone had the highest accuracy (R2adj= 67.26, relative 
RMSE= 17.79%, Sy.x= 2.93, and AIC= 356.62 for the training data; R2adj= 66.70, relative 
RMSE= 18.90%, Sy.x= 3.14, and AIC= 151.89 for the test data). Conversely, the single-
variable model using TWI was the least accurate, with an R2adj of -1.27, a relative RMSE 
of 31.58%, and a Sy.x of 5.25 for the test data.

 

Figure 4: Scatter plot of the predicted and measured values of 1-hr FMC using regression models.

Abbildung 4: Streudiagramm der vorhergesagten und gemessenen Werte der 1-Stunden-FMC unter 
Verwendung von Regressionsmodellen.
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Table 2: 1-hr FMC regression models parameters and accuracy indices.

Tabelle 2: Parameter und Genauigkeitsindizes der Regressionsmodelle für die 1-Stunden- Brenn-
material feuchtigkeit (FMC).

The results obtained for 1-hr FMC using machine learning algorithms are shown in Tab-
le 3 and Figures 5,6 where the different machine learning models are tested using all of 
the variables and the best variables. Among the models, RF had the best general per-
formance, with an R²adj of 97.4 and a relative RMSE of 5.237% on the training data and 
82.7 and 13.891% on the test data when all the variables were used. SVM also performed 
well, with an R²adj of 93.3 and a relative RMSE of 8.011% on the training data and 80.9 and 
14.422% on the test data. The GBoost model achieved high accuracy during training (R²adj 
= 97.6), but significant overfitting was evident, as test performance dropped to R²adj = 80.1 
a relative RMSE of 15.642%. Similarly, the CNN model showed overfitting, with training 
performance at R²adj = 94.6 but a reduced test performance of R²adj = 80.9 and a relative 
RMSE of 14.45%. In turn, when using the best variables, SVM topped all the models in the 
test data, with an R²adj of 84.9 and a relative RMSE of 12.918%, demonstrating the greatest 
benefit from feature selection. This model benefited more from feature selection than RF 
but maintained robust performance, with an R²adj of 82.2 and a relative RMSE of 13.972%.
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In general, RH was the most influential parameter across both the regression and ma-
chine learning models, significantly enhancing the prediction accuracy. When com-
bined with other variables in multivariable models, temperature, VPD, and CC were 
also significant, further improving the model performance. The inclusion of the RH 
improved the prediction performance of the single-variable regression models and 
further enhanced the prediction performance when RH was combined with tempe-
rature, VPD, and CC in the multivariable models.

Figure 5: The relative importance of variables in predicting 1-hr FMC using the Gain method.

Abbildung 5: Die relative Bedeutung der Variablen bei der Vorhersage der 1-Stunden-FMC mittels der 
Gain-Methode.
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Figure 6: Scatter plot of the predicted and measured values of 1-hr FMC using machine learning models.

Abbildung 6: Streudiagramm der vorhergesagten und gemessenen Werte der 1-Stunden-FMC unter 
Verwendung von maschinellen Lernmodellen.
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Table 3: 1-hr FMC machine learning models accuracy indices.

Tabelle 3: Genauigkeitsindizes der maschinellen Lernmodelle für die 1-Stunden-FMC.

 

3.2 10-hr FMC

For the prediction of 10-hr FMC, the multivariable models, including T, RH, WS, CC, soil 
FMC, VPD, and TWI, exhibited high accuracy, with an R2adj of 74.48 and a relative RMSE 
of 12.83% for the training data and an R2adj of 78.69 and a relative RMSE of 11.36% for 
the test data. The model combining T, RH, and CC also exhibited good performance, 
with an R2adj of 84.67 and a relative RMSE of 9.70% for the test data. Among the single-
variable models, the RH model was the most accurate (R2adj = 64.84, relative RMSE= 
15.30%, Sy.x= 2.98, AIC= 362.59 for the test data; R2adj = 77.22, relative RMSE= 11.99%, 
Sy.x= 2.38, AIC= 113.87 for the training data). The WS model was the least accurate, 
with an R2adj of 0.76 and a relative RMSE of 25.71% for the training data and an R2adj of 
-0.36 and relative RMSE of 24.72% for the test data (Table 4; Figure 7).

RH, VPD, and 1-hr FMC were the most influential predictors. When RH was included 
in the multivariable models, the R2adj significantly improved from 77.22 to 84.67 
when RH was combined with temperature, VPD, and 1-hr FMC. Among the machine 
learning models, the combination of these variables allowed RF to achieve an R2adj 
of 73.43 and a relative RMSE of 12.51%, while SVM was less effective, with an R2adj 
of 49.48 and a relative RMSE of 20.65%. While the 1-hr FMC models showed higher 
accuracy, both the 1-hr FMC and 10-hr FMC predictions benefited from the use of 
multiple variables, with RH being the most critical parameter. The machine learning 
models outperformed the traditional regression models, with RF providing the best 
performance across both datasets (Table 4).
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Figure 7: Scatter plot of the predicted and measured values of 10-hr FMC using regression models.

Abbildung 7: Streudiagramm der vorhergesagten und gemessenen Werte der 10-Stunden-FMC unter 
Verwendung von Regressionsmodellen.
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Table 4: 10-hr FMC regression models parameters and accuracy indices.

Tabelle 4: Parameter und Genauigkeitsindizes der Regressionsmodelle für die 10-Stunden-FMC.

 

Table 5 presents the machine learning outcomes for predicting 10-hr FMC using all 
the variables and the best variables. Among the models, the best balance regarding 
performance was provided by the RF model using all the variables, which achieved an 
R²adj of 94.5 with a relative RMSE of 6.15% on the training data and an R²adj of 78.0 with 
a relative RMSE of 12.76% on the test data. GBoost works best on the training data, 
with an R²adj of 95.5, while on the test data, it performs much worse, and its relative 
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RMSE reaches 16.55%, which indicates overfitting. Low performance was achieved in 
the training of SVM, but the results were competitive, with an R²adj of 78.4 and a rela-
tive RMSE of 12.92% (Figure 8 and Figure 9). Additionally, the CNN had moderate per-
formance, with an R²adj of 82.3 for the training data and 72.8 for the test data. The best 
testing performance was obtained with SVM when considering the best variables, for 
which an R²adj of 78.5 and a relative RMSE of 12.5% were obtained; these results were 
slightly improved from the results obtained using all the variables. However, the RF 
model did not perform well, with an R²adj of 73.6 and a relative RMSE of 13.92% on the 
test data, while GBoost and CNN had lower R²adj values of 69.0 and 78.1, respectively.

 

Figure 8: The relative importance of variables in predicting 10-hr FMC using the Gain method.

Abbildung 8: Die relative Bedeutung der Variablen bei der Vorhersage der 10-Stunden-FMC mittels 
der Gain-Methode.
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Figure 9: Scatter plot of the predicted and measured values of 10-hr FMC using machine learning models.

Abbildung 9: Streudiagramm der vorhergesagten und gemessenen Werte der 10-Stunden-FMC unter 
Verwendung von maschinellen Lernmodellen.
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Table 5: Accuracy indices of the 10-hr FMC machine learning models.

Tabelle 5: Genauigkeitsindizes der maschinellen Lernmodelle für die 10-Stunden-FMC.

 

3.3 Litter FMC

Table 6 presents the results of predicting litter FMC using various regression models, 
including single- and multiple-variable models. The model incorporated multiple 
variables, namely, temperature (T), relative humidity (RH), wind speed (WS), canopy 
cover (CC), and soil FMC (FMC. S), vapor pressure deficit (VPD), and topographic wet-
ness index (TWI) performed the best overall, with an R²adj  of 68.7 and relative RMSE of 
14.61% on the training data and an R²adj of 54.57 and relative RMSE of 15.99% on the 
test data, indicating strong predictive power when accounting for multiple meteoro-
logical and environmental variables.

Among the single-variable models, the RH was the most influential predictor of litter 
FMC, with an R²adj  of 51.35 and a relative RMSE of 18.51% in the training data and an 
R²adj  of 46.84 with a relative RMSE of 17.16% in the test data. These results undersco-
re the substantial impact of RH on litter FMC. In comparison, other single-variable 
models, such as those based on T and WS, exhibited significantly lower predictive 
power, with R²adj  values less than 20%, highlighting the crucial role of RH in accurately 
predicting litter FMC.

When T and RH were combined in a two-variable model, a significant improvement in 
accuracy was observed, achieving an R²adj  of 52.37 on the training data and 45.75 on 
the test data. Adding WS as a third variable further enhanced the performance, with 
an R²adj  of 61.61 on the training data and 49.15 on the test data. However, the most 
accurate predictions were achieved with the full model that included CC and FMC. S, 
VPD, and TWI, demonstrating substantial progress in predictive accuracy when com-
bining multiple variables (Table 6; Figure 10).
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Figure 10: Scatter plot of the predicted and measured values of litter FMC using regression models.

Abbildung 10: Streudiagramm der vorhergesagten und gemessenen Werte der Streu-FMC unter 
Verwendung von Regressionsmodellen.
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Table 6: Litter FMC regression models parameters and accuracy indices.

Tabelle 6: Parameter und Genauigkeitsindizes der Regressionsmodelle für die Streu-FMC.

 

Table 7 presents the results of predicting litter FMC using various machine learning 
models with all the variables and the best variables. Among the models tested, 
GBoost achieved the best overall performance, with an R²adj of 95.5 and a relative 
RMSE of 8.51% on the training data and an R²adj of 95.0 with a relative RMSE of 9.85% 
on the test data, indicating a good fit with minimal overfitting. RF also performed 
well, achieving an R²adj of 93.7 and a relative RMSE of 7.02% on the training data and 
an R²adj of 92.2 with a relative RMSE of 8.67% on the test data. SVM had lower accuracy, 
with an R²adj of 85.2 for the training data and an R²adj of 80.4 for the test data. CNN sho-
wed the weakest performance, with an R²adj of 77.3 and a relative RMSE of 12.38% on 
the training data and an R²adj of 71.0 and a relative RMSE of 15.33% on the test data.

When the best variables were used, GBoost continued to perform well, achieving an 
R²adj of 94.2 on the training data and 94.4 on the test data. RF also maintained strong 
performance, with an R²adj of 92.4 on the training data and 91.4 on the test data. Ho-
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wever, the SVM model exhibited a significant decrease in performance, with an R²adj 
of 72.2 for the training data and 71.3 for the test data, and the CNN model exhibited 
a similar trend, with an R²adj of 72.5 for the training data and 76.2 for the test data 
(Figure 11 and Figure 12).

The models showed varying behavior when comparing these results with predicti-
ons for 1-hr FMC and 10-hr FMC. For 1-hr FMC, RF was the best overall model when 
all variables were used, but SVM outperformed the others when the best variables 
were selected. For 10-hr FMC, RF was still the top performer across all variables and 
the best variables. In contrast, for litter FMC, GBoost consistently outperformed all 
the other models, maintaining high accuracy across the training and test data. This 
finding suggested that GBoost is better suited for predicting litter FMC, while RF was 
the most reliable for 1-hr FMC and 10-hr FMC predictions (Table 7).

 
 
 
 

Figure 11: The relative importance of variables in predicting litter FMC using the Gain method.

Abbildung 11: Die relative Bedeutung der Variablen bei der Vorhersage der Streu-FMC mittels der 
Gain-Methode.
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Figure 12: Scatter plot of the predicted and measured values of litter FMC using machine learning models.

Abbildung 12: Streudiagramm der vorhergesagten und gemessenen Werte der Streu-FMC unter 
Verwendung von maschinellen Lernmodellen.
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Table 7: Litter FMC machine learning models accuracy indices.

Tabelle 7: Genauigkeitsindizes der maschinellen Lernmodelle für die Streu-FMC.

 

3.3.1 Variation of Fuel Moisture Content

As an example of seasonal variation, the fuel moisture content (FMC) was predicted 
for 2022 using four machine learning models (RF, CNN, SVM, and GBoost), providing 
insights into seasonal trends across Golestan Province. Figure 13 illustrates the seaso-
nal variation in FMC for different fuel size classes (1-hr, 10-hr, and litter), with data pre-
sented as daily averages from each model. The results indicate that FMC values were 
at their lowest during the summer months (days 182–244), particularly for the 1-hr 
and 10-hr fuel classes, highlighting heightened wildfire risk during this period due 
to drier fuel conditions. Conversely, FMC values began to rise in the fall and peaked 
during late winter and early spring (days 335–366), reflecting the seasonal dynamics 
driven by weather patterns in the region. The 1-hr and 10-hr fuels exhibited shar-
per declines and recoveries compared to the litter FMC, which retained higher mo-
isture levels throughout the year. Across all fuel size classes, slight differences were 
observed between the models. The CNN and RF models showed closer alignment, 
particularly during the dry summer period, while SVM predictions tended to exhibit 
greater variability, especially for litter FMC. GBoost demonstrated smoother trends 
but occasionally underestimated peak FMC values during the wettest periods. The-
se differences highlight the varying sensitivities of the models to input features and 
their ability to generalize seasonal FMC patterns. Despite these variations, all models 
captured the overall trends effectively, demonstrating their suitability for predicting 
FMC dynamics.
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Figure 13: Average daily predicted values of FMC, using four machine learning models (RF, CNN, SVM, 
and GBoost), expressed as a percentage of dry weight, for 1-hr (a), 10-hr (b), and litter size classes (c) in 
Golestan Province for the year 2022.

Abbildung 13: Durchschnittliche tägliche vorhergesagte Werte des FMC unter Verwendung von 
vier maschinellen Lernmodellen (RF, CNN, SVM und GBoost), ausgedrückt als Prozentsatz des 
Trockengewichts, für 1-Stunde, 10-Stunde und Streu Klassen in der Provinz Golestan im Jahr 2022.
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Furthermore, the spatial distribution of predicted FMC is illustrated in Figure 14 for 
the 1-hr, 10-hr, and litter fuel size classes, with seasonal maps presented for spring, 
summer, fall, and winter. These maps highlight considerable variation in FMC across 
Golestan Province, reflecting the influence of seasonal changes, topography, and cli-
matic factors.

For the 1-hr fuel size class, FMC values ranged from 2% to 30%. During spring, FMC 
values were moderate, particularly in the mountainous areas of the south and east, 
where moisture levels were relatively higher. Summer exhibited the lowest FMC 
values, with widespread dry conditions across central and western regions. In fall, 
a slight recovery in moisture content was observed, especially in the eastern areas. 
Winter displayed the highest FMC values, with widespread moisture retention across 
the province.

For the 10-hr fuel size class, FMC values ranged from 5% to 35%. Spring showed mo-
derate moisture levels, with higher values concentrated in the southern mountai-
nous areas. Summer exhibited the most pronounced drying trends, particularly in 
central and western regions. In fall, moisture levels began to increase, particularly in 
the eastern and southern areas. Winter demonstrated the highest FMC values, with 
near-maximum levels across most of the province, reflecting the impact of seasonal 
precipitation.

The litter fuel class displayed FMC values ranging from 5% to 50%. In spring, FMC va-
lues were moderate, with higher moisture levels in the southern and eastern moun-
tains. Summer revealed the driest conditions across all classes, with minimal moisture 
observed in the central and western regions. Fall indicated a gradual moisture reco-
very, particularly in the eastern parts of the province. Winter showcased the highest 
FMC values across the province, highlighting the seasonal accumulation of moisture.
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Figure 14: Spatial distribution of predicted fuel moisture content (FMC) using the best-performing model 
in Golestan Province for the year 2022, presented seasonally: FMC (spring (a), summer (b), fall (c), and 
winter (d)).

Abbildung 14: Räumliche Verteilung des vorhergesagten Brennstofffeuchtigkeitsgehalts (FMC) unter 
Verwendung des besten Modells in der Provinz Golestan für das Jahr 2022, saisonal dargestellt: FMC 
(Frühling (a), Sommer (b), Herbst (c) und Winter (d)).

4 Discussion

4.1 Performance of Different Algorithms

The present study evaluated different modeling approaches for predicting FMC 
across various time-lag classes and litter fuels in Golestan Province, NE Iran. The re-
sults underscore that the prediction of FMC with multivariable models performed 
much better than the prediction of FMC with single-variable methods for different 
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time-lag classes (1-hr, 10-hr, and litter). Previous studies have highlighted the limit-
ations of single-variable models in predicting FMC. Viney (1991) noted that models 
based only on temperature or RH often fail to capture the variability in FMC. Similar-
ly, Nelson (2001) found that incorporating additional variables such as wind speed 
and solar radiation significantly improved the predictive power of FMC models. The 
findings from this study are consistent with these observations, underscoring the im-
portance of a multivariable approach for accurate FMC estimation.

In comparison to those of machine learning models, the findings of these studies 
highlight the inadequacy of linear regression models. This deficit was further highl-
ighted by the relatively lower R² recorded for the linear regression models for all ti-
me-lag classes (Nolan et al., 2016). In contrast, machine learning models, especially 
RF and SVM, demonstrated strong predictive accuracy. RF mostly achieved higher 
R² and lower relative RMSE values. This superiority is due to the ensemble learning 
approach of RF averaging out multiple decision trees, which enhances the predictive 
accuracy and makes it more stable. Moreover, nonlinear relationships modeled by 
the kernel functions of the SVM model have proven to be useful for handling high-
dimensional data and are characteristic of FMC datasets, as supported by Rodrigues 
et al. (2024). This investigation investigated and applied the GBoost and CNN frame-
works. Although these models yielded promising results, they were outperformed 
in this particular case by RF and SVM, though with minimal differences. The method 
iteratively adopted by the GBoost model to reduce prediction errors was adequate, 
but its computational complexity may be why it did not outperform the RF model. In 
contrast, the CNN model was useful for determining spatial patterns but had difficul-
ty generalizing the relationship between the input features and FMC due to the poor 
spatial resolution of this dataset.

4.2 Impact of Independent Variables

The results of this study also highlight the importance of independent variables in FMC 
prediction. Among the univariate models, the models that used RH and VPD had greater 
accuracy than did the models that used other variables. According to Lee et al. (2020) 
and Masinda et al. (2021), RH was the most effective factor affecting FMC. A high RH 
slows the drying process of fuels, leading to higher FMC values, while a low RH accele-
rates drying. On the other hand, models containing univariate or multivariate VPD data 
had greater accuracy than did the other models. Generally, the VPD is increasingly re-
cognized as an essential global metric for evaluating fire activity (Clarke et al., 2022; Ro-
drigues et al., 2024). Our current analysis supports that concept by suggesting that the 
FMC model calculated from the VPD is one of the most effective tools for predicting fuel 
moisture over the full range. Ignition in situations with higher VPDs is more likely to oc-
cur quickly because of the rapid drying of fuels. In addition, a high VPD may contribute 
to increasing spot fires (Nolan et al., 2016; Slijepcevic et al., 2015; Rodrigues et al., 2024).
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Multivariable models have apparent advantages in precisely capturing the complex 
nonlinear dependencies among meteorological variables that determine variations 
in FMC. Single-variable models, on the other hand, while simpler and more interpre-
table, may omit the effects of these other factors. For example, while RH and tempe-
rature independently exert different effects on FMC, their interaction may significant-
ly alter FMC, which is better captured in multivariable functions. This combination 
enables the intricacies of the conditions determining FMC to be more fully explored 
and, therefore, benefits the accuracy of the forecast of FMC (Fan et al., 2023; Lee et al., 
2020). This research therefore confirms the findings from previous studies, such as 
those conducted by Yebra et al. (2013) and Nolan et al. (2016), who determined that 
meteorological and environmental factor-enabled models outperform simpler mo-
dels in terms of FMC prediction. This may be explained by the fact that multivariate 
models reduce the risk of not considering relevant variables able to influence FMC 
and enhance the factor affecting FMC.

It is worth noting that the fuel models presented apparent differences in FMC predic-
tions for the three classes: 1-hr, 10-hr, and litter. The 1-hr class is the smallest and most 
responsive fuel category; thus, this study developed the highest correlations with 
both RH and VPD. This is reasonable because fine fuels respond quickly to changes 
in atmospheric conditions; hence, they are highly sensitive to humidity and drying 
potential variations This sensitivity makes fine fuels particularly challenging to pre-
dict but critical for accurate fire risk assessments. The 10-hr class, which is composed 
of slightly larger fuels, also had a very strong correlation with RH and VPD, though this 
correlation was slightly weaker than that for the 1-hr fuels. This agrees with the slower 
response of these fuels to ambient environmental changes since they take more time 
to equilibrate their moisture content. In contrast, the combined fuel size and type ge-
nerally had more modest correlations with RH and VPD. Greater heterogeneity within 
this class likely dampens the impact of individual meteorological variables to which 
FMC responds. Notwithstanding these differences, multivariable models systemati-
cally outperform single-variable models across all fuel classes, emphasizing the con-
sideration of multiple factors in FMC prediction.

5 Conclusion

The results of this study justify the application of different machine learning models, 
with a particular emphasis on RF and SVM methods for predicting FMC across diffe-
rent time-lag fuel classes under different meteorological conditions in Golestan Pro-
vince, NE Iran. These results outperform simple linear regression models, indicating 
the weakness of univariate models and echoing the strength of multivariable models. 
Among the various variables explored in this study, RH and VPD were determined to 
be the most important factors for modeling FMC, especially for fine fuels belonging 
to the 1-hr class. In addition, machine learning models make use of high-dimensional 
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datasets. These results underscore the importance of advanced modeling approaches 
that can capture complex interactions between meteorological and topographic va-
riables. The inclusion of machine learning models can enhance prediction systems 
and, by implication, the accuracy of FMC projections in forecasting and mapping 
FMC, serving to enhance fire risk assessment and appropriate response strategies in 
wildfires. The reliance on meteorological and topographical data means that other 
potentially important variables, such as vegetation type, soil moisture, and fuel load, 
were not considered. Similarly, while RH and VPD were the most important variables 
in this study, the importance of these variables could vary across different geographic 
territories or climatic environments. However, this study highlights a narrow tempo-
ral and spatial focus and limited model interpretability. Additionally, the models' per-
formance under extreme conditions and their computational complexity may restrict 
real-time application.
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