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Abstract

The purpose of this research is to conduct a performance assessment of forestry ope-
rations across counties in Sweden. We employed a two-stage double bootstrap data
envelopment analysis (DEA) approach to evaluate the efficiency of production units.
The first stage examines the technical efficiency scores by a variable returns-to-scale
slack-based DEA model. In the second stage, we applied the double bootstrap DEA
model to determine the impact of explanatory variables that affect the efficiency of
forested counties. To the best of our knowledge, this is the first attempt to forestry
technical efficiency assessment in Sweden by using double Bootstrap two-stage
data envelopment analysis model. Overall, this study highlights the superiority of the
bootstrap DEA approach in identifying inefficiencies and evaluating efficiency under
uncertainty, providing valuable insights for forestry practices. Our results indicated
that approximately 43% of the counties studied are fully efficient, reflecting the high
overall efficiency score of 0.8512 in the Swedish forest sector. We show that the two
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contextual variables, regional density and deadwood, have a negative influence. In
contrast, precipitation and gross domestic product have positive coefficients, indica-
ting a positive relationship with efficiency. To address uncertain measurement bias, a
double bootstrap DEA model is employed, resulting in an adjusted overall efficiency
score of 0.7480. The estimation results have varying degrees of uncertainty for con-
textual variables, emphasizing the robustness of the influences on the true efficiency
of forested counties in Sweden.

Zusammenfassung

Ziel dieser Studie ist die Leistungsbewertung forstwirtschaftlicher Betriebe in Land-
kreisen in Schweden. Wir verwendeten einen zweistufigen Double-Bootstrap-Ansatz
der Data Envelopment Analysis (DEA), um die Effizienz der Produktionseinheiten zu
bewerten. In der ersten Stufe untersuchten wir die technischen Effizienzwerte mit-
hilfe eines DEA-Modells mit variablen Skalenertragen. In der zweiten Stufe wendeten
wir das Double-Bootstrap-DEA-Modell an, um den Einfluss von erklarenden Variablen
auf die Effizienz bewaldeter Landkreise zu bestimmen. Unseres Wissens ist dies der
erste Versuch, die technische Effizienz der Forstwirtschaft in Schweden mithilfe eines
zweistufigen Double-Bootstrap-DEA-Modells zu bewerten. Insgesamt unterstreicht
diese Studie die Uberlegenheit des Bootstrap-DEA-Ansatzes bei der Identifizierung
von Ineffizienzen und der Bewertung der Effizienz unter Unsicherheit und liefert
wertvolle Erkenntnisse fiir die forstwirtschaftliche Praxis. Die Ergebnisse zeigen, dass
etwa 43% der untersuchten Landkreise voll effizient arbeiten, was den hohen Ge-
samteffizienzwert von 0.8512 im schwedischen Forstsektor widerspiegelt. Wir zei-
gen, dass die beiden Kontextvariablen regionale Dichte und Totholz einen negativen
Einfluss haben. Im Gegensatz dazu weisen Niederschlag und Bruttoinlandsprodukt
positive Koeffizienten auf, was auf einen positiven Zusammenhang mit der Effizienz
hindeutet. Um Messfehler zu berticksichtigen, wird ein doppeltes Bootstrap-DEA-
Modell verwendet, das zu einem angepassten Gesamteffizienzwert von 0.7480 fiihrt.
Die Schiatzergebnisse weisen unterschiedliche Unsicherheitsgrade fiir die Kontextva-
riablen auf, was die Robustheit der Einfllisse auf die tatsachliche Effizienz bewaldeter
Landkreise in Schweden unterstreicht.

1 Introduction

Approximately 70% of Sweden's total land area is covered by forests and this pro-
portion has remained consistently stable over an extended period. Swedish forestry
is deemed to be sustainably managed in the long term. The legislative framework in
Sweden ensures a harmonious equilibrium between production objectives and envi-
ronmental considerations within the realm of multifunctional forestry practices. The
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primary objective of the forestry standard established by the Swedish Endorsement
of Forest Certification is to promote economically viable and valuable forest produc-
tion, while simultaneously safeguarding biodiversity, cultural heritage, and social and
aesthetic values (Lundmark et al. 2014). Considering the need to maintain equilib-
rium between the aforementioned multifunctional forestry values—i.e., inputs of fo-
rest resources and their associated outputs, the forest sector assumes a critical role in
Sweden. This involves the pursuit of strategies aimed at achieving an optimal balance
in the utilization of forest resources (Eurostat 2019). To do this, technical efficiency is
a good indicator. Technical efficiency assesses DMU’s success in producing more out-
puts by using fewer inputs. A DMU is said to be technically efficient if and only if it
produces the maximum output from the minimum quantity of inputs.

In so doing, a well-documented managerial tool, known as data envelopment ana-
lysis (DEA), was initially developed by Charnes et al. (1978). DEA is a nonparametric
methodology used to analyze the relative efficiency of a set of comparable and ho-
mogeneous decision-making units (DMUs). These DMUs are homogeneous in the
sense that they consume multiple incommensurate inputs to produce multiple in-
commensurate outputs. DEA estimates the production technology set using an axio-
matic foundation. It empirically constructs the smallest production set containing
data and satisfying a minimum of production economic regularities. DEA can be ea-
sily extended to cases to determine the most efficient region, provides information
about sources of inefficiency, it enables us to make decisions on funding, planning,
or management. Stochastic frontier analysis (SFA) on the other hand is a parametric
approach. it makes a priori assumptions about the structure of the production pos-
sibility set. It allows us to assume a stochastic relationship between the inputs and
outputs. In particular, it allows us to assume that deviations from the frontier may
reflect not only inefficiencies but also noise in the data. In terms of methods, DEA is
an approach based on mathematical programming, while the SFA approach has a
much more connection to econometric theory. In the choice between DEA and SFA,
a key question is whether one wants flexibility in the mean structure or precision in
the noise separation.

In applied studies utilizing DEA, itis common to observe point estimates of inefficien-
cy without any consideration or discussion of the uncertainty surrounding these es-
timates. Many research papers describe efficiency as being computed or calculated,
rather than estimated, and the results are frequently referred to as efficiencies rather
than efficiency estimates. To tackle this, the DEA literature suggests the utilization of
bootstrap methods as well-documented approaches. These methods aim to estimate
true efficiency by considering the increased uncertainty arising from potential mea-
surement errors (Simar & Wilsons 2004; Tziogkidis 2012). Another limitation of the
DEA application is its inherent challenges related to homogeneity. These challenges
emerge when there are contextual factors that influence the environmental efficien-
cy of DMUs, leading to unfair comparisons among forest managers. According to Ban-
ker and Natarajan (2008), contextual variables include both exogenously fixed factors



Seite 300 Alireza Amirteimoori, Majid Zadmirzaei

and those that are within the control of DMUs' managers. To address these issues and
ensure a comprehensive evaluation process, managers should incorporate two-stage
efficiency measurements. In the first stage, they calculate relative efficiency to assess
the performance of DMUs. In the second stage, they employ various regression mo-
dels to independently account for the effects of contextual factors and obtain reliable
results (Djordjevic et al. 2023). This approach enables a more accurate assessment of
DMUs' performance by accounting for the influence of contextual variables.

To the best of our knowledge, there has been no prior research conducted to eva-
luate the technical efficiency of the forest sector in Sweden using the DEA and si-
multaneous double bootstrap approaches, despite the significant importance of this
sector in the Europe. This creates a remarkable opportunity to delve into the sector's
performance and uncover novel insights. Therefore, considering this research gap,
the primary contribution of this study is to fill this void by:

- Computing the technical efficiency of forest sectors in different counties of Swe-
den (our studied DMUs) by incorporating a Slack-based DEA (SBM-DEA) model

+ Estimating the bias-corrected efficiency of the studied DMUs and subsequently
ranking them based on the obtained results using the bootstrap DEA approach.

« Justifying the impact of contextual factors on the DMUs' true efficiency scores by
developing a double bootstrap regression model

The remaining sections of this practical research are structured as follows: Section 2
reviews related studies in various practical cases and forest management. Section 3
provides a detailed description of the applied DEA, bootstrap, and double bootstrap
regression analyses. Section 4 applies the proposed procedure to a real dataset in the
Sweden forest sector. Sections 5, 6 and 7 present the obtained results, discussion, and
concluding remarks, respectively.

2 Literature review

In the realm of forestry and its related industries, numerous conventional DEA mo-
dels have been employed over the past few decades to evaluate technical efficiency
(TE). Researchers have endeavored to adapt these widely used DEA models to align
with the specific requirements of their case studies. The extended novel DEA models
are essentially derived from the fundamental DEA models—CCR (Charnes et al. 1978)
and BCC (Banker et al. 1984). These models enable the measurement of TE under
constant returns to scale (CRS) and variable returns to scale (VRS) production fron-
tiers, respectively.
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DEA is known as a data-oriented approach, which may encounter sensitivity issu-
es pertaining to data orientation. The pioneering models in this field adopt a radial
approach, focusing on proportional changes in inputs or outputs. However, in the
context of real-world businesses, not all inputs or outputs exhibit proportional be-
havior. To address this limitation, non-radial variations of the SBM-DEA models have
been developed, capable of accommodating non-proportional relationships. Despite
significant advancements made over the last five decades, a definitive superior DEA
method has yet to emerge. The basic models (CCR and BCC) continue to dominate
various applications. For instance, Kao and Yang (1991) were the first to attempt TE
assessment of the Taiwan Forestry Bureau within the DEA framework. Since then, nu-
merous further research studies have been conducted in diverse scenarios involving
forestry and forest-based sectors, utilizing different traditional DEA models (Kao 2010,
Zadmirzaei et al. 2016; Obi & Visser 2017; Strange et al. 2021; Jingxin et al. 2021; Amir-
teimoori et al. 20234, Jin et al. 2025; Wang et al. 2025). More recently, there has been a
wave of research focused on developing enhanced fuzzy SBM-DEA models to address
the challenges posed by uncertain environments. These studies have also integrated
novel artificial intelligence (Al) algorithms to quantify both technical efficiency and
environmental efficiency, specifically targeting the reduction of CO2 emissions in fo-
rest harvesting systems. Noteworthy contributions in this field include the works of
Amirteimoori et al. (2023b), Zadmirzaei et al. (2024) and Amirteimoori et al. (2024).

Moreover, the DEA model relies on the assumption that decision-makers operate in
homogeneous environments. However, this assumption proves inadequate in the
context of environmental systems, where the generation of environmental benefits
or negative impacts is influenced by variables that are beyond the control of ma-
nagers. These variables are referred to as ,external exogenous, non-discretionary
and/or environmental/contextual factors”. Generally, two approaches can be used
to consider these influencing factors on performance results: the modified DEA mo-
dels eliminate non-discretionary factors, while multi-stage DEA and regression mo-
dels adjust the environmental/contextual effects. Banker and Morey (1986) were the
pioneering researchers who introduced the DEA model for managing exogenous
factors. Subsequently, several researchers explored this intriguing approach, inclu-
ding Syrjanen (2004), Camanho et al. (2009), Amirteimoori et al. (2014), and Taleb et
al. (2018). Moreover, a limited number of studies addressed the impact of exogenous
environmental factors on forest resources. For example, Hof et al. (2004) employed a
four-stage methodology to mitigate the influence and bias introduced by exogenous
factors. Macpherson et al. (2013) criticized previous work for solely presenting ad-
justed results without comparing them to the unadjusted ones. Consequently, they
conducted a comprehensive analysis in their recent study, comparing adjusted and
unadjusted results to emphasize the significance of considering exogenous factors
in environmental assessments, using the basic DEA model and regression analyses.
Zadmirzaei et al. (2017) recommended specific DEA models to effectively control exo-
genously fixed factors and ensure accurate evaluations. They argued that traditional
DEA approaches tend to overestimate the efficiency of DMUs. In an uncertain en-
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vironment, Zadmirzaei et al. (2019) developed a novel marginal chance-constrained
DEA model, which accounted for external exogenous inputs and hybrid outputs. A
recent study introduced a fuzzy nondiscretionary DEA model, integrated with an ar-
tificial immune system, for measuring technical efficiency and identifying optimal va-
lues of DMUs (Amirteimoori et al. 2021). More recently, Tan et al. (2023) firstly applied
a super-efficient DEA model to evaluate forestry eco-efficiency (FECO) in 30 Chinese
provinces and cities from 2008 to 2021. In the second stage, they also used the Tobit
regression model to explore contextual factors affecting FECO and gain insights into
multifunctional forestry development.

To improve the methodological robustness and precision of DEA studies, it is impe-
rative to integrate uncertainty measures and acknowledge the inherent estimation
aspect of efficiency values. By embracing a comprehensive approach that diligent-
ly considers and quantifies uncertainty, researchers can deliver a more refined and
dependable assessment of the technical efficiency exhibited by DMUs. This elevated
approach holds the potential to facilitate well-informed decision-making processes
and foster a deeper comprehension of the merits and constraints associated with DEA
as an effective management tool. One well-established method for addressing this
issue is the bootstrap technique, which has been widely employed in DEA literature to
estimate the true efficiency value by considering the increased uncertainty associated
with potential measurement errors. Bootstrap DEA models have emerged as a crucial
tool in the realm of diverse banking systems and manufacturing industries, showca-
sing their wide-ranging development and application (Aggelopoulos & Georgopou-
los 2017; Gardijan KedZo & Tuskan Sjau$ 2021; Samad & Armstrong 2022; Wu & Wang
2022; Yue & Yin 2023). These models have been meticulously crafted and deployed to
address intricate challenges and optimize decision-making processes within the dy-
namic landscape of these sectors. However, there has been limited research on the im-
plementation of the Bootstrap DEA approach specifically in industries related to natu-
ral resources. For instance, Long et al. (2020) employed double bootstrap procedures
in their study to conduct DEA and examine the technical efficiency within the context
of intensive white-leg shrimp farming in Vietnam. Moreover, Shahi et al. (2022) utili-
zed DEA models' measurement capabilities to optimize the performance modeling of
sawmills in Ontario. The robustness and benchmarking abilities of the bootstrap DEA
models are employed to obtain reliable technical efficiency scores. On the other hand,
the artificial neural network (ANN) models utilize abstract learning from a restricted
data set to enhance predictive power in the analysis of sawmill performance.

3 Materials and methods

Data envelopment analysis is a powerful benchmarking tool for examining the relati-
ve technical efficiency of homogeneous decision-making units (DMUs) with multiple
incommensurate inputs and outputs. In efficiency estimation using DEA approach,
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an empirical production possibility set is constructed using the observed DMUs in
the sample and the boundary points of this production set are considered as efficient
frontier. DEA is frequently used to assess the relative efficiency in the forest sector.
In efficiency estimation in the industrial sector, choosing the underlying model is an
importantissue. In performance evaluation in the forest sector, we found that most of
the DMUs do not operate on an optimal scale. Therefore, we think the variable returns
to scale models are more appropriate than the constant returns to scale models. In
our real case, to evaluate the relative efficiencies of the DMUs in the forest sector, we
have used the slack-based measure (SBM) model of Tone (2001) in variable returns to
scale environment. The reason for using SBM model of Tone (2001) is that this model
is a non-radial model that deals directly with inputs excess and outputs shortfall. In
this sense, input-output inefficiencies are considered. Moreover, in our real applica-
tion in the forest sector in Sweden, we found that most of the sectors do not perform
at an optimal scale. In this sense, as Pai et al. (2020) suggested, the variable returns to
scale models are more appropriate to evaluate the performances of the DMUs than
the constant returns to scale models.

Suppose we have JDMUs to be evaluated. Each DMU uses M inputs to generate S out-
puts. Specifically, DMU; uses the input vector x; = (xlj,xzj. ...,xMI-) € R to produce
the output vector y; = (ylj,yzj. ...,ysj) € RS.The mathematical formulation of the
SBM model of Tone (2001) in variable returns to scale environment is as follows:
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In this model, suppose (8%, 2%, s*,d") is an optimal solution. DMU, is said to be full-
efficient if and only if B; = 1.1f DMU, is not efficient, its efficient projection is (x;, ;)
in which
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As all we know, in classic DEA models, we construct an empirical production possibi-
lity set and the boundary points of this set is considered as our underlying efficient
frontier. The relative technical efficiencies of the DMUs are usually overestimated by
DEA. In other words, the DEA efficiency scores might be biased. In this sense, the
use of bootstrapping techniques is useful to derive bias-corrected efficiency scores.
Bootstrap DEA improves the estimation because it uses sampling variations to ana-
lyse the sensitivity of the estimated efficiency scores.

In the first stage of the double bootstrap DEA procedure, the following bootstrap is
used to obtain a bias-corrected efficiency score ﬁ}’k as an estimate for ;. Toward
this end, we use the following modified four-step procedure proposed by Simar and
Wilson (2007):
Step 1: Solve the SBM model (1) to calculate ﬁ’]’-”, the SBM efficiency score of

DMU;: (x,y;) forj=1,2,...,J.
Step 2: For k=1 to 2000, repeat the following steps:
Step 3: Select at random with replacement Efk:j =1,...,Jfrom {885 . B}

Step 4: Set xj.f‘k = g—*ix]-, and calculate the Efk, the SBM efficiency score of
jk

DMUy: (x*,y;) forj=1,2,...,J by solving the following LP models:
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ﬁ}’k is considered as an estimate for ﬁ}f. By repeating the bootstrap procedure,
we analyze the sensitivity of the DMU;: (x;,y;) to the estimated frontier made by
DM Uje: (%", 35) .

Now, in the second stage, 2000 bootstrap estimates are performed to evaluate the
impact of non-discretionary (or explanatory) variables on bias-corrected efficiency
by using the following truncated regression model:

D C))
Log(Bj) = Z HaZgj + &
a=1

in which ﬁ}f is the SBM efficiency of DMU; obtained from Model 2 and zy: d =1, ..., D, are
contextual variables and g is an error term. Moreover, pg: d = 1, ..., D are the weights
corresponding to the contextual variables.

4 Case study and observed data

This application utilizes a comprehensive panel dataset encompassing the years
2018 to 2022, focusing on 21 forested counties located in Sweden. The specific regi-
ons and their corresponding counties can be found in Table 1. Thus, the total number
of observations we have, which is 21 forested counties studied (or DMUs), meets the
rule of thumb in DEA terminology for selecting the appropriate number of DMUs,
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as well as their respective inputs and outputs (Cooper et al. 2011) (n = Max{MS, 3 *
(M + S)}in which J, Mand S are respectively the number of DMUs, inputs and outputs).
Given the limitations of our dataset and the existing body of research in the forest
sector (Gutiérrez & Lozano 2013; Hoogstra & Burger 2013; Zadmirzaei et al. 2017 and
2019; Mohammadi Limaei 2020; Amirteimoori et al. 2021; Susaeta et al. 2024), two
inputs (x) — ,forest area” and ,forest employees”, and three corresponding outputs
(y;) —.biomass” (the total mass of living components of a tree above the stump level),
~growing stock” (the volume of timber available for harvest or currently growing in
a specific region), and ,gross volume of felled trees” (the total volume of trees that
have been cut down within a forest stand) were collected from Swedish Forest Agen-
cy (http://pxweb.skogsstyrelsen.se/pxweb/en/Skogsstyrelsens%20statistikdatabas/
?rxid=03eb67a3-87d7-486d-acce-92fc8082735d) and from Swedish forest statistic
(Skogsdata 2023). It is worth highlighting that the county-level dataset utilized in
this study encompasses the above variables, which collectively encapsulate the pri-
mary dimensions of land, labor, and output related to regional wood supply. Conse-
quently, this data set constitutes a coherent set for comparative efficiency analysis,
as the previously mentioned research has employed these variables with analogous
measurement units. We selected these parameters because they represent the core
operational resources and measurable outputs available consistently across all coun-
ties for the study period and because DEA is designed to work with such comparable
input-output bundles without imposing a parametric production function (Charnes
etal. 1978; Cooper et al. 2007). To ensure that differences in county size do not mecha-
nically drive the results, the analysis uses a slacks-based SBM under a Variable Returns
to Scale (VRS) assumption, which permits decomposition of overall inefficiency into
pure technical and scale efficiency and thus distinguishes managerial performance
from scale effects (Banker et al. 1984; Tone, 2001). Finally, bias-corrected bootstrap in-
ference is applied in the second stage to test for any remaining association between
size and efficiency (Simar & Wilson, 1998). Taken together, these standard methodo-
logical choices ensure that the selected variables are appropriate for the county-level
wood-supply interpretation and guard against the frontier being an artefact of mi-
xed-scale measurements or simple size premia.

Table 2 provides an overview of the statistics related to the inputs and outputs utili-
zed in various DEA analyses.



A Data-driven Two-Stage Bootstrap Approach for Analyzing Technical Efficiency Seite 307

Table 1: Different regions and counties in Sweden.

Tabelle 1: Verschiedene Regionen und Landkreise in Schweden.

Region Counties

I-Norrland (DMUO01-05) Norrbotten, Visterbotten, Jamtland, Visternorrland, Gavleborg

II-Svealand (DMUO06-12) Dalarna, Virmland, Orebro, Vistmanland, Uppsala, Stockholm,
Soédermanland

ITI-Gotaland (DMU13-21) Ostergétland, Vistra Gotaland, Jénkoping, Kronoberg, Kalmar,
Gotland, Halland, Blekinge, Skéne

Table 2: Mean of the input and output variables.

Tabelle 2: Mittelwert der Eingabe- und Ausgabevariablen.

Counties Input Output
Forest Forest Biomass Growing Gross
area Employees (million tons) stock volume of
(10° ha) (No.) (m’sk/ha) felled trees
(10° m?)
Min 139 61 7.76 93 304
Max 5709 3766 177.1 205 8745
Mean 1330.19 1540.95 73.99 160.81 4447.05
Std 1442.11 957.78 53.14 29.72 2604.48
Median 700.00 1600.00 53.48 167.00 4141.00
Q1 383.00 714.00 28.51 142.00 2206.00
Q3 1625.00 2038.00 115.03 181.00 6693.00

Table 3 presents an overview of the utilization of contextual factors in regression ana-
lysis, aiming to identify the effects of exogenous elements on the competitiveness
and efficiency of the forestry sector in Sweden. Hence, to enhance the strategic un-
derstanding of a country, certain macro-level managerial factors have been careful-
ly examined based on the available data. These factors, sourced from (World Bank
2019a and 2019b), include:,,GDP” (serves as an economic performance indicator), ,re-
gional density—RD" (calculates the ratio of forest area to land area, highlighting the
spatial distribution of forests), ,deadwood volume” (regarded as both ecologically
valuable and economically undesirable in terms of forest management challenges in
the short term), ,Mean Annual Temperature—TEMP” and ,Mean Annual Precipitation
—PRECIP” (representing climatic conditions).
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Table 3: Descriptive statistics of the contextual variables for Sweden counties.

Tabelle 3: Deskriptive Statistiken der Kontextvariablen fir schwedische Landkreise.

Variables Description and unit of Mean STD Maximum  Minimum
measures

RD The proportion of forest 578.44 265.11 3387.1 27.02
area within a specific
county in Sweden (10 ha)

GDP Gross domestic product 199947.66 ~ 78942.54  1340350.0 18810
(mil SEK)

TEMP Mean annual temperature 6.66 1.85 8.7 2.2
§©)

PRECIP Mean annual precipitation ~ 713.83 69.26 8354 571.8
(mm)

Deadwood The total volume of 10.58 242 15 6.8
Standing deadwood

(including veteran trees,
stumps, and snags) (m*/ha)

5 Results
5.1 SBM-DEA efficiency

We first applied the conventional SBM-DEA model to this data set. Toward this end,
we pooled all data in a sample and each county-year observation is treated as a se-
parate DMU. In this case, we considered 105 observations. The estimated efficiency
scores, along with their improvement values, are listed in Table 4.
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Table 4: SBM efficiency scores and improvement values (projection changes) of the studied DMUs.

Tabelle 4: SBM-Effizienzwerte und Verbesserungswerte (Projektionsdanderungen) der untersuchten
DMUs.

DMUs Counties SBM — Forest Forest Biomass Growing Gross
DEA area Employees Stock volume of

Efficiency felled

trees
01 Norrbotten 0.3345  2252.0686 481.5429 231.7284 113.6159 5832.4170
02 Visterbotten 1.0000  3958.0000 1616.0000 177.1000 113.0000 8745.0000
03 Jamtland 1.0000  3433.0000 714.0000 174.6700 128.0000 7953.0000
04 Visternorrland 1.0000  1848.0000 2579.0000 124.2700 147.0000 7609.0000
05 Gavleborg 0.9600  1542.4632 2408.0665 112.8868 154.5031 7800.5711
06 Dalarna 0.6172  2016.7785 659.4884 119.1371 148.2786 6157.6016
07 Virmland 0.8062  1274.2579 21573782 101.5080 186.4407 6695.5623
08 Orebro 0.6575 5744646 4627716 494031 172.0462 3790.4575
09 Vistmanland 0.7212 2977519 1785692 274241 168.6023 2219.6768
10 Uppsala 1.0000 537.0000  486.0000  40.1900  173.0000 3725.0000
11 Stockholm 0.5261 2614449  384.4077 244718 166.4506 1855.5457

12 Sodermanland 1.0000 383.0000  238.0000 285100 175.0000 2860.0000
13 Ostergétland 0.7273 629.5431  859.0103  59.8181 184.7353 4362.2701
14 Viistra Gotaland 1.0000 1419.0000 3766.0000 115.0300 191.0000 8174.0000

15 Jonkoping 1.0000 746.0000 2695.0000 64.7900  181.0000 4723.0000
16 Kronoberg 0.9567 648.2741  988.6117  56.6483  153.2607 2931.9634
17 Kalmar 0.7833 687.4985 1281.1808 61.3029 179.5376 4738.2018
18 Gotland 1.0000 139.0000 61.0000 7.7600  134.0000 304.0000
19 Halland 0.9516 296.5451 1496.4054 35.8882  203.2572 2048.4279
20 Blekinge 1.0000 208.0000  625.0000  17.9800  205.0000 969.0000
21 Skine 0.7744 379.0081 1096.6179 439919 189.6836 2392.3884
Mean 0.8512  1127.4674 12149984 78.9098 163.9234 4553.7201

It can be observed that most of the DMUs studied (i.e., 9 out of 21) are fully efficient
(score = 1), with an average efficiency score of approximately 0.851. Due to the non-
radial variation of the applied SBM-DEA model, these fully efficient units enhance effi-
ciency and productivity by increasing their outputs while reducing input levels. Con-
versely, the remaining units with efficiency scores less than 1 should improve their
efficiency by implementing adjustments to their input and output datasets through
projection changes. For instance, DMUO5 (Gavleborg), which exhibits inefficient (sco-
re =0.9600), should increase its first, second, and third outputs (i.e., biomass, growing
stock, and gross volume of felled trees) by 112.8868 million tons, 154.5031 m3sk/ha,
and 7800.5711 m?, respectively, compared to the observed output values listed in
Table 2. At the same time, there is a capacity to reduce the first and second inputs
by 1542.4632 and 2408.0665, respectively. This adjustment would bring it closer to
the production or efficiency boundary point. Similarly, the other inefficient forested
counties should also apply the same procedure to increase their performance.



Seite 310 Alireza Amirteimoori, Majid Zadmirzaei

An important point to be noted is that forest area is considered as input and hence,
inefficient DMUs must reduce inputs to become efficient. At first sight, it is not ratio-
nal to reduce forest areas. However, the forest area we considered as input is a mix
of productive and nonproductive areas and hence to become efficient, we suggest
reducing nonproductive forest areas.

5.2 The results of first-stage bootstrap DEA

The bias-corrected efficiency of all the studied DMUs is computed using the first
bootstrap DEA approach to rank them comprehensively. The results are described in
Tables 5 and 6.

Table 5: Bootstrap-DEA efficiency and full ranking scores.

Tabelle 5: Bootstrap-DEA-Effizienz und vollstandige Ranglistenergebnisse.

DMUs  Counties Bias Bias-corrected Rank
score
01 Norrbotten 0.1059 0.2414 21
02 Viisterbotten 0.1148 0.8852 5
03 Jimtland 0.1054 0.8946
04 Visternorrland  0.1302 0.8698 8
05 Gévleborg 0.1419 0.8581 10
06 Dalarna 0.1107 0.5387 18
07 Virmland 0.1371 0.7741 13
08 Orebro 0.1708 0.5193 19
09 Vistmanland 0.0933 0.6653 15
10 Uppsala 0.1052 0.8948 3
11 Stockholm 0.1620 0.3884 20
12 Sodermanland 0.1309 0.8691 9
13 Ostergotland 0.1107 0.6483 16
14 Viistra Gotaland 0.1202 0.8798 7
15 Jonkoping 0.1179  0.8821 6
16 Kronoberg 0.1482 0.8518 11
17 Kalmar 0.0668 0.7575 14
18 Gotland 0.0739 0.9261 1
19 Halland 0.1617 0.8383 12
20 Blekinge 0.0961 0.9039 2
21 Skéne 0.1869 0.6204 17

Mean 0.1234 0.7480
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In Table 5, the bias-corrected efficiency of each DMU is determined by subtracting
the bias from the initial efficiency scores, which are already calculated using the
SBM-DEA model (Table 5). This adjustment is made by employing the Bootstrap DEA
model, which ultimately enables an acceptable ranking of the DMUs. As a result, by
quantifying the bias to be approximately 0.1234, the overall efficiency of all DMUs
experienced a decrease from 0.8512 to 0.7480. In this case, DMU18 (Gotland) secured
the top rank with an efficiency rating of 0.9261, while DMUO1 (Norrbotten) attained
the lowest position with an efficiency rating of 0.2414. The bias-corrected improved
inputs and outputs are listed in Table 6.

Table 6: Bias-corrected improvement values of the studied DMUS.

Tabelle 6: Bias-korrigierte Verbesserungswerte der untersuchten DMUs.

Counties Forest Forest Biomass Growing Gross
area Employees Stock volume of
felled trees

Norrbotten 1864.241  355.9413  223.1353 106.6892 5748.128
Viisterbotten 2628.791  837.6189 178.7973 114.1054  8827.928
Jamtland 3003.469  500.5617 1752736 128.4559 7979.089
Visternorrland  1258.042  1463.439 1253731 148.2561 7672.997
Givleborg 1415924 203599 107.7211 142.6036  7669.812

Dalarna 1943561 5289152 115.0305 141.4617  6042.841
Virmland 9282739 1359442  96.6115 175.2905 6609.56
Orebro 566.508 394.6887 43.12009 163.535 3715.64
Vistmanland 212.736 101.5069  22.96668 161.3741 2181.324
Uppsala 4335987  349.4362 40.31598 173.5594  3736.241

Stockholm 2479004 3545135 22.14914 160.4094 1817.702
Sodermanland ~ 300.7178  173.3778 28.65033 175.5017  2867.038
Ostergétland 4879714  532.8766 50.75413 173.3956 4306.77

Vistra Gotaland  1351.319  3656.349 115.1058 191.0763 8176.979

Jonkdping 549.6065  1848.188 65.27804 182.1781 4752.403

Kronoberg 433.7742  579.6347 54.04809 149.3546 2898.72

Kalmar 691.403 1243.565 57.34373 167.7674  4647.419
Gotland 129.2639  -30.4163  7.778551 134.1834 304.375
Halland 2275103  1140.056 27.49768 197.081 2017.93

Blekinge 163.264  472.5651 18.03449 205.5299  971.2746

Skéne 2763841  750.3685 34.24207 184.3217  2360.385

Mean 910.2028  888.0294 76.62987 160.7681  4538.312
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5.3 The results of second-stage double bootstrap DEA

Lastly, the results of the double bootstrap regression analysis for the contextual va-
riables and their impact on the bias-corrected efficiency score by double bootstrap
DEA model are shown in Table 7.

Table 7: Results of double bootstrap regression for the contextual variables.

Tabelle 7: Ergebnisse der doppelten Bootstrap-Regression fiir die Kontextvariablen.

p-value 95% bootstrap confidence
Variables Coefficients . interval
Error
Lower Upper
RD -9.9E-04 5.56E-05 0.0432 -1.4E-04 -8.7E-06
GDP 1.4E-07 8.78E-08 0.0401 1.7E-08 3.2E-06
TEMP 0.0291 0.02721 0.1611 2.1E-03 0.2321
PRECIP 0.0018 0.0004 0.0093 1.2E-04 0.0235
Deadwood -0.0044 0.0114 0.0337 -0.0812 -0.0009

The coefficient values in Table 7 indicate the direction and significance of the rela-
tionship between each contextual variable and the bias-corrected efficiency score by
double bootstrap DEA regression model. For instance, for the RD variable, an increase
in the RD variable is associated with a negligible decrease in the efficiency score. Si-
milarly, the Deadwood variable has a negative coefficient, indicating that an increase
in deadwood results in a negligible decrease in the efficiency score. The coefficient
-0.0044 for this variable shows that the percentage change in technical efficiency
associated with a one-unit increase in deadwood is 100(e~%%%4 — 1) = -0.44. The stan-
dard error of 0.0114 indicates a moderate amount of uncertainty in this estimate.
In contrast, The PRECIP variable has a positive coefficient of 0.0018, indicating that
an increase in precipitation is positively related to the efficiency scores. Likewise, a
positive coefficient for GDP suggests that an increase in GDP leads to an increase in
efficiency score. The standard error of 8.78E-08 suggests a relatively small amount of
uncertainty in the estimation.

The p-values in the fourth column of Table 7 indicated that the variables RD, GDP,
PRECIP and Deadwood are statistically significant. However, the TEMP variable has a
p-value of 0.1611, indicating that it is not statistically significant.
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6 Discussion

In this analysis, some extended DEA approaches have been employed to assess the
relative efficiency of different forested counties in Sweden by considering the con-
textual variables. Toward this end, a modified SBM-DEA model was first applied to
estimate the relative efficiency and improvement values of the studied DMUs. The
results showed that almost 43% of the DMUs studied were fully efficient, with a relati-
vely high average overall efficiency score of 0.8512 (Table 4). The observed outcomes
can be attributed to the non-radial characteristics of our SBM-DEA model. This model
enables simultaneous reduction of inputs and enhancement of outputs, effectively
improving the overall efficiency of DMUs (Djordjevi¢ & Krmac 2019; Tone et al. 2020).
For managerial translation, practitioners must prioritize the SBM component-wise
improvement vectors, as these specify precise adjustments required for studied in-
puts (forest Employees and forest area) and outputs (biomass, growing stock, gross
volume of felled trees). While the bias-corrected efficiency score 8 serves as a scree-
ning index (input shortfall = 1 — 8; output multiplier = 1 / 8 — 1), the non-radial nature
of SBM necessitates component-specific vectors to guide actionable interventions—
such as organizational and process improvements (e.g., reassignment, retraining,
contractor optimization) rather than abrupt workforce reductions, or site-appropria-
te silviculture and harvest planning to enhance productivity per unit of forest area
without rapid expansion.

In the second stage, a bootstrap DEA model, as a modified benchmarking technique,
was used to compute the bias-corrected efficiency scores and hence fully rank all
studied DMUs (Table 5). The finding indicated that the utilization of the bootstrap
DEA approach allowed for the adjustment of measurement bias and efficiency scores,
resulting in a decrease in overall efficiency from 0.8512 to 0.7480. The results showed
that the bootstrap DEA approach exhibited superior discriminative ability compa-
red to traditional DEA models in estimating true efficiencies when data uncertainties
existed, enabling accurate identification of inefficiencies, a crucial aspect of DEA ana-
lysis. These findings highlight the benefits of using the bootstrap DEA method for
evaluating efficiency in the presence of uncertainty (Trakakis et al. 2022; Vaseei et
al. 2023). Lastly, a double bootstrap DEA is developed to adjust the impact of con-
textual variables on the bias-corrected efficiency of our studied DMUs (Table 7). The
results indicate that RD and Deadwood variables have negative coefficients, implying
they decrease the efficiency score. In contrast, the precipitation variable has a positi-
ve coefficient, indicating a positive relationship with the score. The variable TEMP is
not statistically significant. Similarly, an increase in GDP leads to an increase in effi-
ciency. Overall, the estimation has a moderate amount of uncertainty for contextual
variables and a relatively small uncertainty for GDP. These findings are completely
consistent with the recent research conducted in diverse management domains,
supporting the notion that macroeconomic indicators, as well as climatic factors,
exert a positive influence on bootstrap performance outcomes (Lopez-Penabad et al.
2020; Wu & Wang 2022; Arhin et al. 2023). As the main consequence, practical cons-
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traints—such as limited usable forest area, accessibility challenges, budgetary limits,
and regulatory biodiversity constraints—must be explicitly addressed. In sum, the
extended SBM-DEA framework with bootstrap corrections yields robust benchmar-
king, and when integrated with component-wise diagnostics, local accounting, and
staged pilots, it enables realistic management interventions that respect ecological
and regulatory boundaries.

Policy implications

The empirical results of this study underline the importance of linking efficiency
outcomes in Swedish forested counties to broader policy frameworks that address
both economic and environmental dimensions. The observed positive relationship
between regional GDP and forestry efficiency, together with the nuanced influence
of precipitation and deadwood, demonstrates that forest policy cannot be conceived
solely in terms of resource productivity, but must be embedded in integrated strate-
gies that align with contemporary EU initiatives. Anchoring regional actions within
instruments such as the New EU Forest Strategy, the Deforestation Regulation, the
Nature Restoration Regulation, Fit-for-55, and the LULUCF framework provides a co-
herent basis for fostering multifunctional forest management while simultaneously
supporting climate, biodiversity, and economic objectives.

Advancing the forest-based value chain requires coordinated measures that enhan-
ce local processing capacity, improve supply-chain efficiency, and create stable de-
mand for sustainable wood products in construction and related sectors. By mobili-
zing sawlogs, pulpwood, and fuelwood into higher-value applications, counties can
capture a larger share of forest-related GDP growth and reinforce the link between
economic development and efficiency gains. Public procurement policies and green
building standards are especially valuable for stimulating uptake, while innovation
programs and cohesion funds can accelerate the transition towards engineered
wood and circular uses of biomass. At the same time, compliance mechanisms such
as the deforestation regulation should be reframed as market-enabling opportuni-
ties to strengthen transparency and traceability, thereby improving the competiti-
veness of Swedish forest products. Similarly, LULUCF accounting rules and the Fit-
for-55 package can incentivize carbon-positive management practices and material
substitution benefits if carefully structured to avoid discouraging higher-value uses
of timber. Parallel attention to biodiversity is essential: integrating deadwood reten-
tion and restoration objectives through spatially targeted planning and payments for
ecosystem services ensures that ecological commitments are met without undermi-
ning the economic viability of forest owners.

Taken together, these considerations suggest that the most effective policy pathway
is one that interweaves economic development with ecological stewardship, situa-
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ting local forestry practices within a broader European policy context. Such an ap-
proach has the potential not only to enhance the competitiveness of the Swedish
forest-based value chain, but also to contribute to long-term resilience and sustaina-
bility in the face of climate change and evolving market demands.

7 Concluding remarks

In this paper, we applied the two-stage double bootstrap DEA procedure to evaluate
the forest efficiency and its associated factors in 21 counties in Sweden for 2018-
2022.In the first stage, we evaluated the efficiency scores by a SBM DEA model in VRS
environment using two outputs and three inputs. Then, in the second stage, we utili-
zed the double bootstrap DEA analysis to identify the factors affecting the efficiency
scores obtained in the first stage.

The main findings from the first stage analysis showed that the overall average ef-
ficiency for Sweden forest sector from the proposed SBM-DEA model was 0.8512,
while after recognizing the bias, the bias-corrected efficiency score was estimated at
0.7480. This means that there is potential to improve Sweden forest efficiency by up
to 25%.

Contextual variables, such as RD and Deadwood, exhibited a negative impact on ef-
ficiency, while GDP showed a moderate positive correlation. In the second stage, the
bootstrap DEA model was used to compute bias-corrected efficiency scores and rank
the counties studied. Moreover, a double bootstrap DEA was developed to adjust the
impact of contextual variables on efficiency. The results showed that RD and Dead-
wood variables had negative coefficients, indicating a decrease in efficiency, while
precipitation, and GDP had positive coefficients, indicating a positive relationship
with efficiency.

While this study aimed to incorporate a comprehensive set of variables to reflect real
efficiency estimation, data availability limitations necessitated methodological tra-
de-offs. A consistent and comprehensive dataset across all Decision-Making Units
(DMUs) from national forestry databases and statistical sources was not accessible
for all proposed variables. Specifically, variables including merchantable forest area
(as opposed to total forested area), machine hours (both own and contracted), har-
vesting service costs, administrative staff salaries, fuel consumption, net investment
(capex—depreciation), output distinctions (e.g., calamity versus normal fellings, saw-
logs versus industrial wood), and site quality indicators (e.g., site index) were incon-
sistently reported or missing for a substantial portion of the sample. These gaps prec-
luded their inclusion without introducing speculative assumptions or bias, which
would compromise the validity of the results. To ensure methodological integrity, the
analysis was restricted to variables with reliable and consistently documented avai-
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lability across the sample. Further studies with access to harmonized, institutionally
standardized datasets would enable richer variable specifications and enhance the
robustness of efficiency estimates. As the future research directions, it is strongly re-
commended that other well-known uncertain DEA approaches (Fuzzy or stochastic
DEA) be developed to deal with impreciseness and ambiguity in Swedish forest ma-
nagement systems.

The use of DEA and robust optimization can also help us derive reliable efficiency
estimates. These problems should be addressed in future research when more com-
prehensive data sets are available.
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